Step 1: General term of the series
The general term of the given series is: \[ T_n = \frac{1}{(1 + (n-1)d)(1 + nd)}. \]
Using partial fraction decomposition: \[ \frac{1}{(1 + (n-1)d)(1 + nd)} = \frac{A}{1 + (n-1)d} + \frac{B}{1 + nd}. \]
Simplify: \[ \frac{1}{(1 + (n-1)d)(1 + nd)} = \frac{A(1 + nd) + B(1 + (n-1)d)}{(1 + (n-1)d)(1 + nd)}. \]
Expanding numerators: \[ 1 = A(1 + nd) + B(1 + (n-1)d). \]
Equating numerators: \[ 1 = A + And + B + Bnd - Bd. \]
Combine terms: \[ 1 = (A + B) + (Ad + Bd)n - Bd. \]
Equating coefficients:
1. \(A + B = 0\),
2. \(Ad + Bd = 0\),
3. \(-Bd = 1\).
From \(A + B = 0\): \[ B = -A. \] Substitute \(B = -A\) into \(-Bd = 1\): \[ -(-A)d = 1 \quad \implies \quad A = \frac{1}{d}. \] Thus, \(B = -\frac{1}{d}\).
The partial fraction decomposition becomes: \[ \frac{1}{(1 + (n-1)d)(1 + nd)} = \frac{1}{d} \left[ \frac{1}{1 + (n-1)d} - \frac{1}{1 + nd} \right]. \]
Step 2: Simplify the series
The series becomes: \[ \sum_{n=1}^{10} \frac{1}{(1 + (n-1)d)(1 + nd)} = \frac{1}{d} \left[ 1 - \frac{1}{1 + 10d} \right]. \]
Simplify: \[ \text{Sum} = \frac{1}{d} \times \frac{(1 + 10d) - 1}{1 + 10d}. \]
Combine terms: \[ \text{Sum} = \frac{1}{d} \times \frac{10d}{1 + 10d}. \]
Step 3: Solve for \(d\)
Given that the sum of the series is 5: \[ \frac{10}{1 + 10d} = 5. \]
Simplify: \[ 1 + 10d = 2 \quad \implies \quad 10d = 1 \quad \implies \quad d = \frac{1}{10}. \]
Step 4: Compute \(50d\)
\[ 50d = 50 \times \frac{1}{10} = 5. \]
Final Answer is Option (2).
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + ... \infty = \frac{\pi^4}{90}, $ $ \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + ... \infty = \alpha, $ $ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + ... \infty = \beta, $ then $ \frac{\alpha}{\beta} $ is equal to: