If \( \alpha \) and \( \beta \) are the roots of the equation \( 2z^2 - 3z - 2i = 0 \), where \( i = \sqrt{-1} \), then
\[
16 \cdot {Re} \left( \frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \right) \cdot {Im} \left( \frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \right)
\]
is equal to: