Given the parabola:
\[
y^2 = 12x
\]
and points \( P \) and \( Q \) on it whose ordinates (y-coordinates) are in the ratio 1:2.
We need to find the locus of the point of intersection of the normals at \( P \) and \( Q \).
Step 1: Parameterize the parabola.
For parabola \( y^2 = 4ax \), here \(4a = 12 \Rightarrow a = 3\).
Coordinates on parabola can be expressed as:
\[
(x, y) = (a t^2, 2 a t) = (3 t^2, 6 t)
\]
Step 2: Let the parameters corresponding to points \( P \) and \( Q \) be \( t_1 \) and \( t_2 \) respectively.
Since the ordinates are in ratio 1:2:
\[
\frac{y_P}{y_Q} = \frac{6 t_1}{6 t_2} = \frac{t_1}{t_2} = \frac{1}{2} \implies t_1 = \frac{t_2}{2}
\]
Step 3: Equation of normal at parameter \( t \) on parabola \( y^2 = 4ax \):
\[
y + t x = 2 a t + a t^3
\]
For \( a = 3 \), normal becomes:
\[
y + t x = 6 t + 3 t^3
\]
Step 4: Normals at \( P(t_1) \) and \( Q(t_2) \):
\[
y + t_1 x = 6 t_1 + 3 t_1^3
\]
\[
y + t_2 x = 6 t_2 + 3 t_2^3
\]
Step 5: Find intersection of these two normals by subtracting:
\[
(y + t_1 x) - (y + t_2 x) = (6 t_1 + 3 t_1^3) - (6 t_2 + 3 t_2^3)
\]
\[
t_1 x - t_2 x = 6 (t_1 - t_2) + 3 (t_1^3 - t_2^3)
\]
\[
x (t_1 - t_2) = 6 (t_1 - t_2) + 3 (t_1^3 - t_2^3)
\]
Divide both sides by \( t_1 - t_2 \) (non-zero):
\[
x = 6 + 3 \frac{t_1^3 - t_2^3}{t_1 - t_2}
\]
Recall:
\[
t_1^3 - t_2^3 = (t_1 - t_2)(t_1^2 + t_1 t_2 + t_2^2)
\]
So:
\[
x = 6 + 3 (t_1^2 + t_1 t_2 + t_2^2)
\]
Step 6: Substitute \( t_1 = \frac{t_2}{2} \):
\[
x = 6 + 3 \left( \left(\frac{t_2}{2}\right)^2 + \frac{t_2}{2} \times t_2 + t_2^2 \right) = 6 + 3 \left( \frac{t_2^2}{4} + \frac{t_2^2}{2} + t_2^2 \right) = 6 + 3 \times \frac{7 t_2^2}{4} = 6 + \frac{21}{4} t_2^2
\]
Step 7: Find \( y \) at intersection by substituting \( x \) in one normal, say:
\[
y + t_2 x = 6 t_2 + 3 t_2^3
\]
\[
y = 6 t_2 + 3 t_2^3 - t_2 x
\]
Substitute \( x \):
\[
y = 6 t_2 + 3 t_2^3 - t_2 \left(6 + \frac{21}{4} t_2^2 \right) = 6 t_2 + 3 t_2^3 - 6 t_2 - \frac{21}{4} t_2^3 = 3 t_2^3 - \frac{21}{4} t_2^3 = - \frac{9}{4} t_2^3
\]
Step 8: Express \( t_2^2 \) in terms of \( x \):
\[
x = 6 + \frac{21}{4} t_2^2 \implies t_2^2 = \frac{4}{21} (x - 6)
\]
So:
\[
t_2^3 = t_2 \cdot t_2^2 = t_2 \times \frac{4}{21} (x - 6)
\]
Since \( t_2 = \pm \sqrt{t_2^2} \), take the positive root for the locus.
Hence:
\[
t_2^3 = \left(\frac{4}{21}\right)^{3/2} (x - 6)^{3/2}
\]
Ignoring constants, the locus is:
\[
y = -\frac{9}{4} t_2^3 = -18 \left( \frac{x - 6}{21} \right)^{3/2}
\]
Rewrite as:
\[
y + 18 \left( \frac{x - 6}{21} \right)^{3/2} = 0
\]
Therefore, the locus of the point of intersection of the normals is:
\[
\boxed{ y + 18 \left( \frac{x - 6}{21} \right)^{3/2} = 0 }
\]