Given:
\[
y = \frac{ax + \beta}{\gamma x + \delta}.
\]
Step 1: Finding the first derivative \( y_1 \)
Using the quotient rule:
\[
y' = \frac{(\gamma x + \delta)(a) - (ax + \beta)(\gamma)}{(\gamma x + \delta)^2}.
\]
\[
y' = \frac{a\gamma x + a\delta - a\gamma x - \beta\gamma}{(\gamma x + \delta)^2}.
\]
\[
y' = \frac{a\delta - \beta\gamma}{(\gamma x + \delta)^2}.
\]
Step 2: Finding the second derivative \( y_2 \)
Differentiating again:
\[
y'' = \frac{d}{dx} \left( \frac{a\delta - \beta\gamma}{(\gamma x + \delta)^2} \right).
\]
Using the chain rule:
\[
y'' = \frac{(a\delta - \beta\gamma)(-2\gamma)}{(\gamma x + \delta)^3}.
\]
\[
y'' = \frac{-2\gamma (a\delta - \beta\gamma)}{(\gamma x + \delta)^3}.
\]
Step 3: Finding the third derivative \( y_3 \)
Differentiating again:
\[
y''' = \frac{d}{dx} \left( \frac{-2\gamma (a\delta - \beta\gamma)}{(\gamma x + \delta)^3} \right).
\]
\[
y''' = \frac{-2\gamma (a\delta - \beta\gamma)(-3\gamma)}{(\gamma x + \delta)^4}.
\]
\[
y''' = \frac{6\gamma^2 (a\delta - \beta\gamma)}{(\gamma x + \delta)^4}.
\]
Step 4: Computing \( 2y_1 y_3 \)
\[
2y_1 y_3 = 2 \times \frac{a\delta - \beta\gamma}{(\gamma x + \delta)^2} \times \frac{6\gamma^2 (a\delta - \beta\gamma)}{(\gamma x + \delta)^4}.
\]
\[
= \frac{12 \gamma^2 (a\delta - \beta\gamma)^2}{(\gamma x + \delta)^6}.
\]
Since \( y_2^2 = \frac{4\gamma^2 (a\delta - \beta\gamma)^2}{(\gamma x + \delta)^6} \), we get:
\[
2y_1 y_3 = 3y_2^2.
\]
Thus, the correct answer is:
\[
3y_2^2.
\]