Question:

The point which lies on the tangent drawn to the curve x4ey+2y+1=3 x^4 e^y + 2 \sqrt{y} + 1 = 3 at the point (1,0) (1,0) is:

Show Hint

To find a point on the tangent line, first compute dydx \frac{dy}{dx} using implicit differentiation and then use the point-slope equation.
Updated On: Mar 25, 2025
  • (2,6) (2,6)
  • (2,6) (2,-6)
  • (2,6) (-2,-6)
  • (2,6) (-2,6)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Differentiate the given function
Given: x4ey+2y+1=3. x^4 e^y + 2 \sqrt{y} + 1 = 3. Differentiating both sides with respect to x x using implicit differentiation: ddx(x4ey+2y+1)=ddx(3). \frac{d}{dx} \left( x^4 e^y + 2 \sqrt{y} + 1 \right) = \frac{d}{dx} (3). Applying the derivative rules: 4x3ey+x4eydydx+1ydydx=0. 4x^3 e^y + x^4 e^y \frac{dy}{dx} + \frac{1}{\sqrt{y}} \frac{dy}{dx} = 0. Step 2: Solve for dydx \frac{dy}{dx} at (1,0) (1,0)
Substituting x=1 x = 1 and y=0 y = 0 : 4(1)3e0+(1)4e0dydx+10dydx=0. 4(1)^3 e^0 + (1)^4 e^0 \frac{dy}{dx} + \frac{1}{\sqrt{0}} \frac{dy}{dx} = 0. Since e0=1 e^0 = 1 , we simplify: 4+dydx=0. 4 + \frac{dy}{dx} = 0. dydx=4. \frac{dy}{dx} = -4. Step 3: Find the equation of the tangent line
Using the point-slope form: yy1=m(xx1). y - y_1 = m (x - x_1). Substituting (1,0) (1,0) and m=4 m = -4 : y0=4(x1). y - 0 = -4(x - 1). y=4x+4. y = -4x + 4. Step 4: Check which point satisfies the equation
For (2,6) (-2,6) : 6=4(2)+4. 6 = -4(-2) + 4. 6=8+4=6. 6 = 8 + 4 = 6. Since it satisfies the equation, the correct answer is: (2,6). (-2,6).
Was this answer helpful?
0
0