Step 1: Differentiate the given function
Given: \[ x^4 e^y + 2 \sqrt{y} + 1 = 3. \] Differentiating both sides with respect to \( x \) using implicit differentiation: \[ \frac{d}{dx} \left( x^4 e^y + 2 \sqrt{y} + 1 \right) = \frac{d}{dx} (3). \] Applying the derivative rules: \[ 4x^3 e^y + x^4 e^y \frac{dy}{dx} + \frac{1}{\sqrt{y}} \frac{dy}{dx} = 0. \] Step 2: Solve for \( \frac{dy}{dx} \) at \( (1,0) \)
Substituting \( x = 1 \) and \( y = 0 \): \[ 4(1)^3 e^0 + (1)^4 e^0 \frac{dy}{dx} + \frac{1}{\sqrt{0}} \frac{dy}{dx} = 0. \] Since \( e^0 = 1 \), we simplify: \[ 4 + \frac{dy}{dx} = 0. \] \[ \frac{dy}{dx} = -4. \] Step 3: Find the equation of the tangent line
Using the point-slope form: \[ y - y_1 = m (x - x_1). \] Substituting \( (1,0) \) and \( m = -4 \): \[ y - 0 = -4(x - 1). \] \[ y = -4x + 4. \] Step 4: Check which point satisfies the equation
For \( (-2,6) \): \[ 6 = -4(-2) + 4. \] \[ 6 = 8 + 4 = 6. \] Since it satisfies the equation, the correct answer is: \[ (-2,6). \]