Step 1: Simplifying the denominator
The denominator consists of:
\[
(x+\sqrt{x^2 - 2}) + (x - \sqrt{x^2 - 2}).
\]
Since \( x + \sqrt{x^2 - 2} \) and \( x - \sqrt{x^2 - 2} \) are conjugates, their sum simplifies to:
\[
(x+\sqrt{x^2 - 2}) + (x - \sqrt{x^2 - 2}) = 2x.
\]
Step 2: Simplifying the numerator
Rewriting the terms:
\[
\left(\sqrt{2x+1} + \sqrt{2x-1}\right) + \left(\sqrt{2x+1} - \sqrt{2x-1}\right) P x^4 - 16.
\]
Using the identity:
\[
\sqrt{a} + \sqrt{b} = \frac{a-b}{\sqrt{a} - \sqrt{b}}.
\]
Approximating for large \( x \):
\[
\sqrt{2x+1} \approx \sqrt{2x} + \frac{1}{2\sqrt{2x}}, \quad \sqrt{2x-1} \approx \sqrt{2x} - \frac{1}{2\sqrt{2x}}.
\]
Thus,
\[
\sqrt{2x+1} + \sqrt{2x-1} = 2\sqrt{2x}.
\]
Similarly,
\[
\sqrt{2x+1} - \sqrt{2x-1} = \frac{1}{\sqrt{2x}}.
\]
Step 3: Evaluating the limit
\[
\lim\limits_{x \to \infty} \frac{(2\sqrt{2x}) + \left(\frac{1}{\sqrt{2x}}\right) P x^4 - 16}{2x} = 1.
\]
For large \( x \), dominant terms in the numerator and denominator must balance. Comparing coefficients,
\[
P = \frac{1}{16}.
\]