Step 1: Understand the components of the parabola.
We have the vertex \( V = \left( \frac{3}{2}, 3 \right) \) and directrix given by
\[
x + 2y = 0
\]
The parabola is defined as the set of points equidistant from the focus and directrix.
Step 2: Find the focus.
The vertex lies midway between the focus and directrix. The distance from the vertex to directrix is:
\[
d = \frac{|x_0 + 2 y_0|}{\sqrt{1^2 + 2^2}} = \frac{\left| \frac{3}{2} + 2 \times 3 \right|}{\sqrt{5}} = \frac{| \frac{3}{2} + 6 |}{\sqrt{5}} = \frac{\frac{15}{2}}{\sqrt{5}} = \frac{15}{2 \sqrt{5}} = \frac{15 \sqrt{5}}{10} = \frac{3 \sqrt{5}}{2}
\]
So, distance between vertex and focus is \( \frac{3 \sqrt{5}}{2} \).
Focus lies on the line perpendicular to the directrix through vertex; directrix normal vector is \( \vec{n} = (1, 2) \).
Focus coordinates:
\[
\left( \frac{3}{2} + \frac{3 \sqrt{5}}{2} \times \frac{1}{\sqrt{5}},\ 3 + \frac{3 \sqrt{5}}{2} \times \frac{2}{\sqrt{5}} \right) = \left( \frac{3}{2} + \frac{3}{2},\ 3 + 3 \right) = (3, 6)
\]
Step 3: Write the parabola condition.
Parabola is set of points \( (x,y) \) where distance from focus equals distance from directrix:
\[
\sqrt{(x - 3)^2 + (y - 6)^2} = \frac{|x + 2y|}{\sqrt{5}}
\]
Square both sides:
\[
(x - 3)^2 + (y - 6)^2 = \frac{(x + 2y)^2}{5}
\]
Multiply both sides by 5:
\[
5(x - 3)^2 + 5(y - 6)^2 = (x + 2y)^2
\]
Expand both sides:
\[
5(x^2 - 6x + 9) + 5(y^2 - 12y + 36) = x^2 + 4xy + 4y^2
\]
Simplify:
\[
5x^2 - 30x + 45 + 5y^2 - 60y + 180 = x^2 + 4xy + 4y^2
\]
Bring all terms to one side:
\[
5x^2 - 30x + 45 + 5y^2 - 60y + 180 - x^2 - 4xy - 4y^2 = 0
\]
Simplify:
\[
4x^2 - 4xy + y^2 - 30x - 60y + 225 = 0
\]
Rewrite in the form:
\[
a x^2 + b y^2 - c x y - 30 x - 60 y + 225 = 0
\]
where
\[
a = 4, \quad b = 1, \quad c = 4
\]
Therefore,
\[
\alpha + \beta + \gamma = a + b + c = 4 + 1 + 1 = 6
\]
Final answer:
\[
\boxed{6}
\]