To determine the domain of the function \(f(x) = \log_e \left( \frac{2x-3}{5+4x} \right) + \sin^{-1} \left( \frac{4+3x}{2-x} \right)\), we need to evaluate the domain constraints of each component separately.
Let's solve this inequality:
The expression is positive when both the numerator and denominator are positive, or both are negative.
Solve \(2x - 3 > 0\): \(x > \frac{3}{2}\)
Solve \(5 + 4x > 0\): \(x > -\frac{5}{4}\)
Since \(x > \frac{3}{2}\) implies \(x > -\frac{5}{4}\), the valid interval from this case is \(( \frac{3}{2}, \infty )\)
Solve \(2x - 3 < 0\): \(x < \frac{3}{2}\)
Solve \(5 + 4x < 0\): \(x < -\frac{5}{4}\)
The valid interval from this case is \((-\infty, -\frac{5}{4})\)
Therefore, the domain for the logarithm is \((-\infty, -\frac{5}{4}) \cup (\frac{3}{2}, \infty)\)
Let's solve the inequalities:
Simplify and solve the inequality:
\(4 + 3x \geq -2 + x\)
\(2x \geq -6\)
\(x \geq -3\)
Simplify and solve the inequality:
\(4 + 3x \leq 2 - x\)
\(4x \leq -2\)
\(x \leq -\frac{1}{2}\)
Therefore, the domain for the inverse sine is \([-3, -\frac{1}{2}]\)
Now, combine the domains from both functions:
The overlap \((-\infty, -\frac{5}{4}) \cup (\frac{3}{2}, \infty)\) and \([-3, -\frac{1}{2}]\) gives \([-3, -\frac{5}{4}]\)
So, the domain of \(f(x)\) is \([\alpha, \beta] = [-3, -\frac{5}{4}]\)
Thus, \(\alpha^2 + 4\beta = (-3)^2 + 4\left(-\frac{5}{4}\right) = 9 - 5 = 4\)
Therefore, the answer is 4.
\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: