Given function is
\[
f(x) = \log_e \left( \frac{2x - 3}{5 + 4x} \right) + \sin^{-1} \left( \frac{4 + 3x}{2 - x} \right)
\]
For the domain of \(f(x)\), we require:
\[
\frac{2x - 3}{5 + 4x}>0 \quad \text{and} \quad \left| \frac{4 + 3x}{2 - x} \right| \le 1
\]
Start with the logarithmic condition:
\[
\frac{2x - 3}{5 + 4x}>0
\Rightarrow x \in \left( -\infty, -\frac{5}{4} \right) \cup \left( \frac{3}{2}, \infty \right)
\]
Now consider the inverse sine condition:
\[
-1 \le \frac{4 + 3x}{2 - x} \le 1
\]
Break this into two inequalities:
\[
\frac{4 + 3x}{2 - x} \ge -1 \quad \text{and} \quad \frac{4 + 3x}{2 - x} \le 1
\]
Solving the first:
\[
\frac{4 + 3x}{2 - x} + 1 \ge 0
\Rightarrow \frac{4 + 3x + 2 - x}{2 - x} = \frac{6 + 2x}{2 - x} \ge 0
\]
Solving the second:
\[
\frac{4 + 3x}{2 - x} - 1 \le 0
\Rightarrow \frac{4 + 3x - 2 + x}{2 - x} = \frac{2 + 4x}{2 - x} \le 0
\]
Combining both:
\[
\left( \frac{6 + 2x}{2 - x} \ge 0 \right) \cap \left( \frac{2 + 4x}{2 - x} \le 0 \right)
\]
Multiply the two expressions:
\[
\frac{(6 + 2x)(2 + 4x)}{(2 - x)^2} \le 0
\]
Solve the inequality:
\[
x \in \left[ -3, -\frac{1}{2} \right]
\]
Now take the intersection of both conditions:
\[
x \in \left( -\infty, -\frac{5}{4} \right) \cup \left( \frac{3}{2}, \infty \right)
\quad \cap \quad
x \in \left[ -3, -\frac{1}{2} \right]
\Rightarrow x \in \left[ -3, -\frac{5}{4} \right)
\]
Thus, the domain of \(f(x)\) is:
\[
x \in \left[ -3, -\frac{5}{4} \right)
\]
Let \( \alpha = -3 \), \( \beta = -\frac{5}{4} \)
Then,
\[
\alpha^2 + 4\beta = (-3)^2 + 4 \cdot \left( -\frac{5}{4} \right) = 9 - 5 = 4
\]