If O be the origin and the coordinates of P be (1, 2, -3),then find the equation of the plane passing through P and perpendicular to OP.
The coordinates of the points, O and P, are (0, 0, 0) and (1, 2, -3) respectively.
Therefore, the direction ratios of OP are (1-0) =1, (2-0)=2, and (-3-0)=-3
It is known that the equation of the plane passing through the point(x1, y1, z1) is a(x-x1) + b(y-y1) + c(z-z1) = 0
where, a, b, and c are the direction ratios of normal.
Here, the direction ratios of normal are 1, 2, and -3, and the point P is (1, 2, -3).
Thus, the equation of the required plane is 1(x-1) + 2(y-2) - 3(z+3) = 0
⇒ x+2y-3z-14 = 0
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Let \(\alpha x+\beta y+y z=1\) be the equation of a plane passing through the point\((3,-2,5)\)and perpendicular to the line joining the points \((1,2,3)\) and \((-2,3,5)\) Then the value of \(\alpha \beta y\)is equal to ____
What is the Planning Process?