Step 1: Recognize the vector identity used: \[ |\mathbf{u} + \mathbf{v} + \mathbf{w}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 + |\mathbf{w}|^2 + 2 (\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{u}), \] where \(\mathbf{u}, \mathbf{v}, \mathbf{w}\) are the vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c}\).
Step 2: Apply this identity to the given vector expressions and rearrange to find relations between dot products: \[ ( \mathbf{a} + \mathbf{b} - \mathbf{c} )^2 + ( \mathbf{b} + \mathbf{c} - \mathbf{a} )^2 + ( \mathbf{c} + \mathbf{a} - \mathbf{b} )^2 = 36, \] which implies simplifications based on the magnitudes and orthogonality of vectors.
Step 3: Calculate \(|2\mathbf{a} - 3\mathbf{b} + 2\mathbf{c}|^2\) using properties of vector norms and the results obtained from step 2: \[ |2\mathbf{a} - 3\mathbf{b} + 2\mathbf{c}|^2 = 4|\mathbf{a}|^2 + 9|\mathbf{b}|^2 + 4|\mathbf{c}|^2 - 12 \mathbf{a} \cdot \mathbf{b} + 8 \mathbf{a} \cdot \mathbf{c} - 12 \mathbf{b} \cdot \mathbf{c}. \] Plug in known values and solve for the final magnitude.
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).