Step 1: Recognize the vector identity used: \[ |\mathbf{u} + \mathbf{v} + \mathbf{w}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 + |\mathbf{w}|^2 + 2 (\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{u}), \] where \(\mathbf{u}, \mathbf{v}, \mathbf{w}\) are the vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c}\).
Step 2: Apply this identity to the given vector expressions and rearrange to find relations between dot products: \[ ( \mathbf{a} + \mathbf{b} - \mathbf{c} )^2 + ( \mathbf{b} + \mathbf{c} - \mathbf{a} )^2 + ( \mathbf{c} + \mathbf{a} - \mathbf{b} )^2 = 36, \] which implies simplifications based on the magnitudes and orthogonality of vectors.
Step 3: Calculate \(|2\mathbf{a} - 3\mathbf{b} + 2\mathbf{c}|^2\) using properties of vector norms and the results obtained from step 2: \[ |2\mathbf{a} - 3\mathbf{b} + 2\mathbf{c}|^2 = 4|\mathbf{a}|^2 + 9|\mathbf{b}|^2 + 4|\mathbf{c}|^2 - 12 \mathbf{a} \cdot \mathbf{b} + 8 \mathbf{a} \cdot \mathbf{c} - 12 \mathbf{b} \cdot \mathbf{c}. \] Plug in known values and solve for the final magnitude.
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to:
A solid is dissolved in 1 L water. The enthalpy of its solution (\(\Delta H_{{sol}}^\circ\)) is 'x' kJ/mol. The hydration enthalpy (\(\Delta H_{{hyd}}^\circ\)) for the same reaction is 'y' kJ/mol. What is lattice enthalpy (\(\Delta H_{{lattice}}^\circ\)) of the solid in kJ/mol?