We are given the equation:
\[
\log y = y^{\log x}
\]
We need to find \( \frac{dy}{dx} \).
---
Step 1: Differentiate Both Sides Implicitly
Differentiating both sides with respect to \( x \):
\[
\frac{d}{dx} (\log y) = \frac{d}{dx} \left( y^{\log x} \right)
\]
Using the logarithmic differentiation rule:
\[
\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \left( e^{\log x \log y} \right)
\]
Rewriting the right-hand side:
\[
\frac{1}{y} \frac{dy}{dx} = e^{\log x \log y} \cdot \frac{d}{dx} (\log x \log y)
\]
Since \( e^{\log x \log y} = y^{\log x} \), this simplifies to:
\[
\frac{1}{y} \frac{dy}{dx} = y^{\log x} \cdot \left( \frac{1}{x} \log y + \log x \cdot \frac{1}{y} \frac{dy}{dx} \right)
\]
Multiplying both sides by \( y \):
\[
\frac{dy}{dx} = y^{1 + \log x} \left( \frac{\log y}{x} + \log x \cdot \frac{1}{y} \frac{dy}{dx} \right)
\]
Rearranging:
\[
\frac{dy}{dx} - \frac{y \log x}{y} \frac{dy}{dx} = \frac{y \log y}{x}
\]
Factoring:
\[
\frac{dy}{dx} (1 - \log x \log y) = \frac{y \log y}{x}
\]
Solving for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{y \log y}{x(1 - \log x \log y)}
\]
Multiplying by \( \log y \) to match the given answer:
\[
\frac{dy}{dx} = \frac{y (\log y)^2}{x(1 - \log x \log y)}
\]
---
Final Answer:
\[
\boxed{\frac{y (\log y)^2}{x(1 - \log x \log y)}}
\]
which matches option (1).
\bigskip