If, \( I_n = \int_{-\pi}^{\pi} \frac{\cos(nx)(1+2^x)}{dx} \), where \( n = 0, 1, 2, \dots \), then which of the following are correct?
A. \( I_n = I_{n+2} \), for all \( n = 0, 1, 2, \dots \)
B. \( I_n = 0 \), for all \( n = 0, 1, 2, \dots \)
C. \( \sum_{n=1}^{10} I_n = 2^{10} \)
D. \( \sum_{n=1}^{10} I_n = 0 \)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]