If \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x^3 \sin^4 x \, dx = k \), then \( k \) is ____________.
Step 1: Analyzing the Function's Parity
The function inside the integral is: \[ f(x) = x^3 \sin^4 x \] Since \( x^3 \) is odd and \( \sin^4 x \) is even, their product \( x^3 \sin^4 x \) is an odd function.
Step 2: Integrating an Odd Function
For any odd function \( f(x) \), we know that: \[ \int_{-a}^{a} f(x) \, dx = 0 \] Given that our limits are symmetric about zero, we can directly conclude: \[ k = 0 \]
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
A stationary tank is cylindrical in shape with two hemispherical ends and is horizontal, as shown in the figure. \(R\) is the radius of the cylinder as well as of the hemispherical ends. The tank is half filled with an oil of density \(\rho\) and the rest of the space in the tank is occupied by air. The air pressure, inside the tank as well as outside it, is atmospheric. The acceleration due to gravity (\(g\)) acts vertically downward. The net horizontal force applied by the oil on the right hemispherical end (shown by the bold outline in the figure) is:
Explain the construction of a spherical wavefront by using Huygens' principle.
The slope of the tangent to the curve \( x = \sin\theta \) and \( y = \cos 2\theta \) at \( \theta = \frac{\pi}{6} \) is ___________.