If \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x^3 \sin^4 x \, dx = k \), then \( k \) is ____________.
Step 1: Analyzing the Function's Parity
The function inside the integral is: \[ f(x) = x^3 \sin^4 x \] Since \( x^3 \) is odd and \( \sin^4 x \) is even, their product \( x^3 \sin^4 x \) is an odd function.
Step 2: Integrating an Odd Function
For any odd function \( f(x) \), we know that: \[ \int_{-a}^{a} f(x) \, dx = 0 \] Given that our limits are symmetric about zero, we can directly conclude: \[ k = 0 \]
Find the area of the region defined by the conditions: $ \left\{ (x, y): 0 \leq y \leq \sqrt{9x}, y^2 \geq 3 - 6x \right\} \text{(in square units)} $
The slope of the tangent to the curve \( x = \sin\theta \) and \( y = \cos 2\theta \) at \( \theta = \frac{\pi}{6} \) is ___________.
Solve the following L.P.P. by graphical method:
Maximize:
\[ z = 10x + 25y. \] Subject to: \[ 0 \leq x \leq 3, \quad 0 \leq y \leq 3, \quad x + y \leq 5. \]