Evaluate:
\[ I = \int_2^4 \left( |x - 2| + |x - 3| + |x - 4| \right) dx \]
We need to handle the absolute value expressions carefully. Let’s analyze where each expression inside the absolute value changes sign:
So, we split the interval \( [2, 4] \) at \( x = 3 \):
In this interval:
So the integrand becomes:
\[ (x - 2) + (3 - x) + (4 - x) = 5 - x \]
\[ \int_2^3 (5 - x) \, dx = \left[5x - \frac{x^2}{2} \right]_2^3 \] \[ = \left(15 - \frac{9}{2}\right) - \left(10 - \frac{4}{2}\right) = \left(\frac{30 - 9}{2}\right) - \left(\frac{20 - 4}{2}\right) = \frac{21}{2} - \frac{16}{2} = \frac{5}{2} \]
In this interval:
So the integrand becomes:
\[ (x - 2) + (x - 3) + (4 - x) = x - 1 \]
\[ \int_3^4 (x - 1) \, dx = \left[ \frac{x^2}{2} - x \right]_3^4 = \left( \frac{16}{2} - 4 \right) - \left( \frac{9}{2} - 3 \right) = (8 - 4) - \left( \frac{9 - 6}{2} \right) = 4 - \frac{3}{2} = \frac{5}{2} \]
\[ I = \frac{5}{2} + \frac{5}{2} = \boxed{5} \]
Let $ f(x) + 2f\left( \frac{1}{x} \right) = x^2 + 5 $ and $ 2g(x) - 3g\left( \frac{1}{2} \right) = x, \, x>0. \, \text{If} \, \alpha = \int_{1}^{2} f(x) \, dx, \, \beta = \int_{1}^{2} g(x) \, dx, \text{ then the value of } 9\alpha + \beta \text{ is:}$
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is: