Find the area of the region bounded by the curves: \[ y = x^2,\quad y = x,\quad \text{from } x = 0 \text{ to } x = 3 \]
Equate \( y = x \) and \( y = x^2 \): \[ x = x^2 \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0 \Rightarrow x = 0,\ x = 1 \] So the region of intersection lies between \( x = 0 \) and \( x = 1 \), where: \[ y = x \text{ is above } y = x^2 \]
Area between curves from \( x = a \) to \( x = b \) is: \[ \int_a^b \left[\text{Upper} - \text{Lower}\right] dx \] Here, from \( x = 0 \) to \( x = 1 \): \[ \text{Upper} = x,\quad \text{Lower} = x^2 \Rightarrow \text{Area} = \int_0^1 (x - x^2)\,dx \]
\[ \int_0^1 (x - x^2)\,dx = \int_0^1 x\,dx - \int_0^1 x^2\,dx \] \[ = \left[\frac{x^2}{2}\right]_0^1 - \left[\frac{x^3}{3}\right]_0^1 = \left(\frac{1}{2} - 0\right) - \left(\frac{1}{3} - 0\right) = \frac{1}{2} - \frac{1}{3} = \frac{3 - 2}{6} = \frac{1}{6} \]
\[ \boxed{\text{Area} = \frac{1}{6}} \text{ square units} \]
Let $ I_1 = \int_{\frac{1}{2}}^{1} 2x \cdot f(2x(1 - 2x)) \, dx $
and $ I_2 = \int_{-1}^{1} f(x(1 - x)) \, dx \; \text{then} \frac{I_2}{I_1} \text{ equals to:} $
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]