Find the area of the region bounded by the curves: \[ y = x^2,\quad y = x,\quad \text{from } x = 0 \text{ to } x = 3 \]
Equate \( y = x \) and \( y = x^2 \): \[ x = x^2 \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0 \Rightarrow x = 0,\ x = 1 \] So the region of intersection lies between \( x = 0 \) and \( x = 1 \), where: \[ y = x \text{ is above } y = x^2 \]
Area between curves from \( x = a \) to \( x = b \) is: \[ \int_a^b \left[\text{Upper} - \text{Lower}\right] dx \] Here, from \( x = 0 \) to \( x = 1 \): \[ \text{Upper} = x,\quad \text{Lower} = x^2 \Rightarrow \text{Area} = \int_0^1 (x - x^2)\,dx \]
\[ \int_0^1 (x - x^2)\,dx = \int_0^1 x\,dx - \int_0^1 x^2\,dx \] \[ = \left[\frac{x^2}{2}\right]_0^1 - \left[\frac{x^3}{3}\right]_0^1 = \left(\frac{1}{2} - 0\right) - \left(\frac{1}{3} - 0\right) = \frac{1}{2} - \frac{1}{3} = \frac{3 - 2}{6} = \frac{1}{6} \]
\[ \boxed{\text{Area} = \frac{1}{6}} \text{ square units} \]
Let $ f(x) + 2f\left( \frac{1}{x} \right) = x^2 + 5 $ and $ 2g(x) - 3g\left( \frac{1}{2} \right) = x, \, x>0. \, \text{If} \, \alpha = \int_{1}^{2} f(x) \, dx, \, \beta = \int_{1}^{2} g(x) \, dx, \text{ then the value of } 9\alpha + \beta \text{ is:}$
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is: