Find:\[ \int \frac{dx}{(x + 2)(x^2 + 1)} \]
We use partial fraction decomposition:
\[ \frac{1}{(x + 2)(x^2 + 1)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1} \]
Multiply both sides by \( (x + 2)(x^2 + 1) \):
\[ 1 = A(x^2 + 1) + (Bx + C)(x + 2) \]
Expand both sides:
\[ 1 = A(x^2 + 1) + Bx(x + 2) + C(x + 2) \] \[ = A x^2 + A + Bx^2 + 2Bx + Cx + 2C \] \[ = (A + B)x^2 + (2B + C)x + (A + 2C) \]
Now, equate coefficients:
Solving:
From \( A + B = 0 \Rightarrow B = -A \)
Substitute in \( 2B + C = 0 \Rightarrow 2(-A) + C = 0 \Rightarrow C = 2A \)
Substitute into third equation:
\[ A + 2(2A) = 1 \Rightarrow A + 4A = 1 \Rightarrow 5A = 1 \Rightarrow A = \frac{1}{5} \] \[ B = -\frac{1}{5},\quad C = \frac{2}{5} \]
\[ \int \left( \frac{1}{5(x + 2)} + \frac{-\frac{1}{5}x + \frac{2}{5}}{x^2 + 1} \right) dx \] \[ = \frac{1}{5} \int \frac{1}{x + 2} dx - \frac{1}{5} \int \frac{x}{x^2 + 1} dx + \frac{2}{5} \int \frac{1}{x^2 + 1} dx \]
\[ \boxed{ \frac{1}{5} \ln|x + 2| - \frac{1}{10} \ln(x^2 + 1) + \frac{2}{5} \tan^{-1} x + C } \]
Let $ I_1 = \int_{\frac{1}{2}}^{1} 2x \cdot f(2x(1 - 2x)) \, dx $
and $ I_2 = \int_{-1}^{1} f(x(1 - x)) \, dx \; \text{then} \frac{I_2}{I_1} \text{ equals to:} $
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]