If $$ \int \frac{\left( \sqrt{1 + x^2} + x \right)^{10}}{\left( \sqrt{1 + x^2} - x \right)^9} \, dx = \frac{1}{m} \left( \left( \sqrt{1 + x^2} + x \right)^n \left( n\sqrt{1 + x^2} - x \right) \right) + C, $$ $\text{where } m, n \in \mathbb{N} \text{ and }$ $C \text{ is the constant of integration, then } m + n$ $\text{ is equal to:}$
Step 1: We are given the following expression:
\[ \int \frac{ \left( \sqrt{1 + x^2 + x} \right)^{10} \left( \sqrt{1 + x^2 + x} \right)^9 }{\left( \sqrt{1 + x^2 + x} \right)^{19}} dx \]
Step 2: The equation simplifies to:
\[ \int_1^{19} dx \]
Step 3: We make the substitution:
\[ \sqrt{1 + x^2 + x} + x = t \] Differentiating: \[ \left( \frac{x}{\sqrt{1 + x^2}} + 1 \right) dx = dt \]
Hence:
\[ \frac{dt}{t \cdot \sqrt{1 + x^2}} = \frac{1}{t} \]
Step 4: This leads to:
\[ I = f(t^{19}) \cdot dt \]
Step 5: The integration becomes:
\[ \int \left( t^{19} + t^{17} \right) dt \]
Step 6: Solving the integral:
\[ = \frac{1}{2} \left( t^{20} + t^{18} \right) + C \]
Step 7: Substituting values, we get:
\[ = \frac{19 \sqrt{1 + x^2} - x}{360} + C \]
Step 8: Final value of \( m \) and \( n \):
From the final equation, we find: \[ m = 360, \quad n = 19 \] Thus: \[ m + n = 379 \]
In the diagram given below, there are three lenses formed. Considering negligible thickness of each of them as compared to \( R_1 \) and \( R_2 \), i.e., the radii of curvature for upper and lower surfaces of the glass lens, the power of the combination is: