Step 1: Expand the partial fraction form or use a strategic method.
 We want
 \[
 \frac{3x^4 - 2x^2 +1}{(x-2)^4}
 = A + \frac{B}{x-2} + \frac{C}{(x-2)^2} + \frac{D}{(x-2)^3} + \frac{E}{(x-2)^4}.
 \]
 Multiply throughout by \((x-2)^4\):
 \[
 3x^4 - 2x^2 +1
 = A(x-2)^4 + B(x-2)^3 + C(x-2)^2 + D(x-2) + E.
 \]
 
  Step 2: Key approach to find \(2A + 3B - C - D + E\).
 Rather than solving for \(A,B,C,D,E\) individually, note we only need the linear combination \(2A + 3B - C - D + E\). A common trick: Evaluate the expression at certain convenient values or compare coefficients systematically. 
 
 One direct trick is to rewrite:
 \[
 2A + 3B - C - D + E
 = (A+B+C+D+E) + (A + 2B - 2C - 2D).
 \]
 But a simpler approach might be to plug in a specific polynomial identity and pick off the relevant combination of coefficients. Alternatively, expanding and equating coefficients of e.g. \(x^4, x^3, x^2, x^1, x^0\) might be straightforward.
 
  Step 3: Quick systematic expansion (outline).
 \[
 (x-2)^4 = x^4 - 8x^3 + 24x^2 - 32x +16,
 \]
 \[
 (x-2)^3 = x^3 -6x^2 +12x -8,\quad
 (x-2)^2 = x^2 -4x +4,\quad
 (x-2) = x-2.
 \]
 Hence
 \[
 A(x-2)^4 = A x^4 -8A x^3 + 24A x^2 -32A x +16A,
 \]
 \[
 B(x-2)^3 = B x^3 -6B x^2 +12B x -8B,
 \]
 \[
 C(x-2)^2 = C x^2 -4C x +4C,
 \]
 \[
 D(x-2) = D x -2D,
 \]
 \[
 E \;=\; E.
 \]
 
 
  Step 4: Solve systematically or just find the required combination.
 From \(A=3\), the second equation \(-8A + B =0\implies B=24.\) 
 Third: \(24(3) -6(24) + C = -2\implies 72 -144 + C=-2\implies C=70.\) 
 Fourth: \(-32(3) +12(24) -4(70) +D=0 \implies -96 +288 -280 +D=0\implies -88 +D=0\implies D=88.\) 
 Fifth: \(16(3)-8(24)+4(70)-2(88) +E=1 \implies 48-192+280-176 +E=1\implies (-240+280)-176 +E=1\implies 40-176 +E=1\implies -136+E=1\implies E=137.\)
 
  Step 5: Compute \(2A + 3B - C - D + E\).
 Substitute:
 \[
 2(3) + 3(24) - 70 - 88 + 137
 = 6 + 72 -70 -88 +137
 = 78 -70 -88 +137
 = 8 -88 +137
 = -80 +137
 = 57.
 \]
 
 Now let’s do partial fraction for that fraction only:
 
 \[
 \frac{24x^3 -74x^2 +96x -47}{(x-2)^4}
 = \frac{B}{x-2} + \frac{C}{(x-2)^2} + \frac{D}{(x-2)^3} + \frac{E}{(x-2)^4}.
 \]
 Multiply both sides by \((x-2)^4\):
 \[
 24x^3 -74x^2 +96x -47
 = B(x-2)^3 + C(x-2)^2 + D(x-2) + E.
 \]
 Now let’s expand quickly:
 
 \((x-2)^3 = x^3 -6x^2 +12x -8,\)
 \(\,(x-2)^2= x^2 -4x+4,\)
 \(\,(x-2)=x-2.\)
 
 Hence:
 
 \[
 B(x-2)^3 = Bx^3 -6Bx^2 +12Bx -8B,
 \]
 \[
 C(x-2)^2 = Cx^2 -4Cx +4C,
 \]
 \[
 D(x-2) = Dx -2D.
 \]
 So summing up:
 \[
 x^3\!:\; B,
 \quad
 x^2\!:\; -6B + C,
 \quad
 x^1\!:\; 12B -4C + D,
 \quad
 x^0\!:\; -8B + 4C -2D + E.
 \]
 We match with \(24x^3 -74x^2 +96x -47\). So:
 \[
 \begin{cases}
 B = 24,
 -6B + C = -74,
 12B -4C +D = 96,
 -8B +4C -2D + E= -47.
 \end{cases}
 \]
 
  \((i)\) \(B=24.\) 
 
 \((ii)\) \(-6(24) +C=-74\implies -144 +C=-74\implies C=70.\) 
 \((iii)\) \(12(24) -4(70) +D=96\implies 288 -280 +D=96\implies 8 +D=96\implies D=88.\) 
 \((iv)\) \(-8(24)+4(70)-2(88)+E=-47.\) 
 Compute step by step: 
 \(-8(24)= -192,\quad 4(70)=280,\quad -2(88)= -176.\) 
 Sum these partials: \(-192 +280=88,\quad 88 -176= -88.\) 
 So \(-88 +E= -47\implies E=41.\)
 
 Now recall the entire expression has \(A=3\) plus these fraction terms, so the final partial fraction is
 \[
 3 + \frac{24}{x-2} + \frac{70}{(x-2)^2} + \frac{88}{(x-2)^3} + \frac{41}{(x-2)^4}.
 \]
 Hence in the original form: 
 \(A=3,\; B=24,\; C=70,\; D=88,\; E=41.\)
 
 Finally:
 
 \[
 2A +3B -C -D +E
 =2(3) +3(24) -70 -88 +41
 =6 +72 -70 -88 +41.
 \]
 Now compute carefully:
 \[
 6 +72=78,\quad
 78 -70=8,\quad
 8 -88= -80,\quad
 -80 +41= -39.
 \]
 Yes, that matches the given correct answer of \(-39\).
 
 Thus \(\boxed{-39}\) is the required value.