We are given the differential equation:
\[
x^2 \frac{dy}{dx} = x^2 + xy + y^2
\]
Step 1: Rewrite the Equation
Divide both sides by \( x^2 \) (assuming \( x \neq 0 \)) to separate variables:
\[
\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}
\]
\[
\frac{dy}{dx} = 1 + \frac{y}{x} + \left(\frac{y}{x}\right)^2
\]
Let \( v = \frac{y}{x} \), so \( y = vx \) and \( \frac{dy}{dx} = v + x \frac{dv}{dx} \) (using the product rule). Substitute into the equation:
\[
v + x \frac{dv}{dx} = 1 + v + v^2
\]
Step 2: Simplify the Equation
Rearrange to isolate the differential term:
\[
x \frac{dv}{dx} = 1 + v^2
\]
\[
\frac{dv}{dx} = \frac{1 + v^2}{x}
\]
Step 3: Separate Variables
Rearrange to separate \( v \) and \( x \):
\[
\frac{dv}{1 + v^2} = \frac{dx}{x}
\]
Step 4: Integrate Both Sides
Integrate the left-hand side with respect to \( v \) and the right-hand side with respect to \( x \):
\[
\int \frac{dv}{1 + v^2} = \int \frac{dx}{x}
\]
The left-hand side is the integral of \( \frac{1}{1 + v^2} \), which is \( \arctan(v) \):
\[
\arctan(v) = \ln |x| + C
\]
where \( C \) is the constant of integration.
Step 5: Substitute Back \( v = \frac{y}{x} \)
\[
\arctan\left(\frac{y}{x}\right) = \ln |x| + C
\]
Step 6: Solve for \( y \)
Take the tangent of both sides:
\[
\frac{y}{x} = \tan(\ln |x| + C)
\]
\[
y = x \tan(\ln |x| + C)
\]
Step 7: Verify the Solution
Differentiate \( y = x \tan(\ln |x| + C) \) to check:
Let \( u = \ln |x| + C \), so \( y = x \tan(u) \).
\[
\frac{dy}{dx} = \tan(u) + x \cdot \sec^2(u) \cdot \frac{du}{dx}
\]
\[
\frac{du}{dx} = \frac{1}{x}
\]
\[
\frac{dy}{dx} = \tan(\ln |x| + C) + x \cdot \sec^2(\ln |x| + C) \cdot \frac{1}{x}
\]
\[
= \tan(\ln |x| + C) + \sec^2(\ln |x| + C)
\]
This needs to match the original equation, but let's substitute \( v = \tan(\ln |x| + C) \) and verify the differential equation holds, which confirms the solution is consistent.
Final Answer
The general solution is:
\[
\boxed{y = x \tan(\ln |x| + C)}
\]