If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Show Hint
To find the value of \(x\) from a determinant equation, expand the determinant using the formula \(ad - bc\), set it equal to zero, and solve the resulting equation.
We are given the determinant equation:
\[
\begin{vmatrix}
2x & 3 \\
x & -8 \\
\end{vmatrix} = 0
\]
Using the formula for a \(2 \times 2\) determinant:
\[
\begin{vmatrix}
a & b \\
c & d \\
\end{vmatrix} = ad - bc
\]
Substitute values:
\[
(2x)(-8) - (3)(x) = -16x - 3x^2
\]
Rewriting:
\[
-3x^2 - 16x = 0
\]
Multiply both sides by \(-1\) for simplicity:
\[
3x^2 + 16x = 0
\Rightarrow x(3x + 16) = 0
\]
So the possible solutions are:
\[
x = 0 \quad \text{or} \quad x = -\frac{16}{3}
\]
\[
2x^2 - 24 = 0 \Rightarrow x^2 = 12 \Rightarrow x = \pm 2\sqrt{3}
\]