We are given three vertices of a triangle:
\[
A(3, 0),\quad B(0, k),\quad C(-3, 0)
\]
The area of a triangle with vertices \((x_1, y_1), (x_2, y_2), (x_3, y_3)\) is given by:
\[
\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
\]
Substituting the given values:
\[
= \frac{1}{2} \left| 3(k - 0) + 0(0 - 0) + (-3)(0 - k) \right|
= \frac{1}{2} \left| 3k + 0 + 3k \right|
= \frac{1}{2} \left| 6k \right|
\]
Given that the area is \(9\) square units:
\[
\frac{1}{2} |6k| = 9
\Rightarrow |6k| = 18
\Rightarrow k = \pm3
\]
Among the given options, only \(3\) is present.
\[
\boxed{k = 3}
\]