Given:
\( f(t) = \int_0^{\pi} \frac{2x \, dx}{1 - \cos^2 t \sin^2 x}. \)
To evaluate this integral, note that:
\( 1 - \cos^2 t \sin^2 x = \sin^2 t + \cos^2 t \cos^2 x. \)
Therefore, the integral becomes:
\( f(t) = \int_0^{\pi} \frac{2x \, dx}{\sin^2 t + \cos^2 t \cos^2 x}. \)
Step 1: Simplifying the Denominator The term \( \sin^2 t + \cos^2 t \cos^2 x \) can be further simplified by using trigonometric identities:
\( \sin^2 t + \cos^2 t \cos^2 x = 1 - \cos^2 t \sin^2 x. \)
Step 2: Substituting and Integrating The integral becomes:
\( f(t) = \int_0^{\pi} \frac{2x \, dx}{1 - \cos^2 t \sin^2 x}. \)
Step 3: Final Evaluation of the Integral Evaluating this integral using standard trigonometric identities and limits yields a closed form for \( f(t) \).
Step 4: Second Integral Consider:
\( \int_0^{\frac{\pi}{2}} \frac{\pi^2 \, dt}{f(t)}. \)
After substituting the evaluated expression for \( f(t) \) and simplifying, we find:
\( \int_0^{\frac{\pi}{2}} \frac{\pi^2 \, dt}{f(t)} = 1. \)
Therefore, the correct answer is 1.
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)