This question asks which binary mixture does not form a minimum boiling azeotrope. An azeotrope is a mixture of two or more liquids whose proportions cannot be altered by simple distillation. They have a constant boiling point. Minimum boiling azeotropes have a boiling point lower than either of their individual components.
Let's evaluate each option:
Therefore, the correct answer is \(\text{C}_6\text{H}_5\text{OH} + \text{C}_6\text{H}_5\text{NH}_2\) as they do not form such an azeotrope due to the specific interactions between the two components that stabilize their separate phases more than their mixture.
Key Concept:
Minimum boiling azeotropes form when:
- Components show positive deviation from Raoult's law
- Molecular interactions between unlike molecules are weaker than between like molecules
- Typically occurs between molecules with different polarity or hydrogen bonding capacity
Analysis of Options:
- Option 1: CS2 + CH3COCH3
- Carbon disulfide (non-polar) + acetone (polar)
- Forms minimum boiling azeotrope (shows positive deviation)
- Option 2: H2O + CH3COC2H5
- Water (strong H-bonding) + methyl ethyl ketone (weak H-bonding)
- Forms minimum boiling azeotrope
- Option 3: C6H5OH + C6H5NH2
- Phenol + aniline (both can form strong intermolecular H-bonds)
- Shows negative deviation (forms maximum boiling azeotrope)
- Correct answer as it doesn't form minimum boiling azeotrope
- Option 4: CH3OH + CHCl3
- Methanol + chloroform (forms H-bonded complex)
- Shows positive deviation (minimum boiling azeotrope)
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: