Step 1: Recall first-order kinetics equation \[ t = \frac{2.303}{k} \log \frac{[A]_0}{[A]} \] where \(k\) is the rate constant, \([A]_0\) is initial concentration, and \([A]\) is concentration at time \(t\).
Step 2: Calculate \(t_1\) for 1/4th decomposition \[ t_1 = \frac{2.303}{k} \log \frac{1}{1/4} = \frac{2.303}{k} \log 4 = \frac{2.303}{k} \times 2 \log 2 \]
Step 3: Calculate \(t_2\) for 1/8th decomposition \[ t_2 = \frac{2.303}{k} \log \frac{1}{1/8} = \frac{2.303}{k} \log 8 = \frac{2.303}{k} \times 3 \log 2 \]
Step 4: For decomposition to:
- 1/4 remaining: \( t_1 = \frac{2.303}{k} \log 4 \) - 1/8 remaining: \( t_2 = \frac{2.303}{k} \log 8 \) Thus: \[ \frac{t_1}{t_2} = \frac{\log 4}{\log 8} = \frac{2 \log 2}{3 \log 2} = \frac{2}{3} \]
The decomposition of a compound A follows first-order kinetics. The concentration of A at time t = 0 is 1.0 mol L-1. After 60 minutes, it reduces to 0.25 mol L-1. What is the initial rate of the reaction at t = 0? (Take ln 2 = 0.693)