To determine the value of \( f(0) \) for the given function \( f \) to be continuous on \( \mathbb{R} \), we need to ensure the left-hand limit \(\lim_{x \to 0^-} f(x)\) and the right-hand limit \(\lim_{x \to 0^+} f(x)\) are equal and also equal to \( f(0) \).
\(\mathbf{Step\ 1:}\) Evaluate \(\lim_{x \to 0^-} f(x)\):
\( f(x) = \sin x - \sin\left(\frac{x}{2}\right)\) when \(x < 0\).
The limit is computed as follows:
\(\lim_{x \to 0^-} (\sin x - \sin\left(\frac{x}{2}\right)) = \sin 0 - \sin 0 = 0\).
\(\mathbf{Step\ 2:}\) Evaluate \(\lim_{x \to 0^+} f(x)\):
\( f(x) = \frac{x}{\sqrt{x^2 + \sqrt{x^2}}}\) when \(x > 0\).
We simplify:
\(\lim_{x \to 0^+} \frac{x}{\sqrt{x^2 + \sqrt{x^2}}}\) can be reduced by analyzing \(\sqrt{x^2} = |x|\), so:
\(\sqrt{x^2 + \sqrt{x^2}} = \sqrt{x^2 + x} = \sqrt{x(x+1)}\).
The limit expression becomes:
\(\lim_{x \to 0^+} \frac{x}{x\sqrt{1 + \frac{1}{x}}} = \lim_{x \to 0^+} \frac{1}{\sqrt{1 + \frac{1}{x}}}\).
As \(x \to 0^+\), \(\frac{1}{x} \to \infty\) and \(\sqrt{1 + \frac{1}{x}} \approx \frac{1}{x}\), thus:
\(\frac{1}{\sqrt{1 + \frac{1}{x}}} \approx \frac{x}{1}\), consequently:
\(\lim_{x \to 0^+} \frac{x}{x\sqrt{1 + \frac{1}{x}}}\) is \(0\).
\(\mathbf{Conclusion:}\) Since both \(\lim_{x \to 0^-} f(x) = 0\) and \(\lim_{x \to 0^+} f(x) = \frac{1}{2}\), we must define \(f(0)\) as the value satisfying continuity, ensuring \(f(0) = 0\) is incorrect. Thus, ensuring continuity, the consistent choice is \(f(0) = \frac{1}{2}\).