We are given the function:
\[
f(x) = \frac{x}{1 + |x|}
\]
We need to find the domain of \( f'(x) \), the derivative of this function.
Step 1: Understand the behavior of \( f(x) \)
The function \( f(x) \) involves an absolute value, so we break it into two cases:
For \( x \geq 0 \), \( |x| = x \Rightarrow f(x) = \dfrac{x}{1 + x} \)
For \( x<0 \), \( |x| = -x \Rightarrow f(x) = \dfrac{x}{1 - x} \)
Step 2: Compute the derivative piecewise
Case 1: \( x>0 \)
\[
f(x) = \frac{x}{1 + x} \Rightarrow f'(x) = \frac{(1 + x)(1) - x(1)}{(1 + x)^2} = \frac{1 + x - x}{(1 + x)^2} = \frac{1}{(1 + x)^2}
\]
Case 2: \( x<0 \)
\[
f(x) = \frac{x}{1 - x} \Rightarrow f'(x) = \frac{(1 - x)(1) - x(-1)}{(1 - x)^2} = \frac{1 - x + x}{(1 - x)^2} = \frac{1}{(1 - x)^2}
\]
Step 3: Check differentiability at \( x = 0 \)
We calculate the left-hand and right-hand derivatives at \( x = 0 \):
\[
\lim_{x \to 0^-} f'(x) = \frac{1}{(1 - 0)^2} = 1
\]
\[
\lim_{x \to 0^+} f'(x) = \frac{1}{(1 + 0)^2} = 1
\]
Since both side limits exist and are equal, and since \( f(x) \) is continuous at \( x = 0 \), the derivative exists at \( x = 0 \).
Step 4: Conclusion
So the derivative exists for all real \( x \). Hence, the domain of the derivative is:
\[
\boxed{(-\infty, \infty)}
\]