Step 1: We are asked to evaluate the right-hand limit:
\[
\lim_{x \to 2^+} \left( \frac{[x]^3}{3} - \left[ \frac{x^3}{3} \right] \right)
\]
Step 2: When \( x \to 2^+ \), we are approaching 2 from the right (i.e., values like 2.01, 2.001, etc.).
So:
\[
[x] = 2
\text{(since greatest integer less than or equal to \( x \) is 2)}
\Rightarrow [x]^3 = 8
\Rightarrow \frac{[x]^3}{3} = \frac{8}{3}
\]
Step 3: Now consider \( \left[ \frac{x^3}{3} \right] \)
As \( x \to 2^+ \), we choose values slightly greater than 2:
Let \( x = 2 + h \), where \( h \to 0^+ \)
Then:
\[
x^3 = (2 + h)^3 = 8 + 12h + 6h^2 + h^3 \Rightarrow \frac{x^3}{3} = \frac{8}{3} + 4h + 2h^2 + \frac{h^3}{3}
\]
Since \( h \to 0^+ \), this expression is slightly more than \( \frac{8}{3} \), but still less than 3 (since \( \frac{8}{3} \approx 2.666\ldots \)).
So:
\[
\left[ \frac{x^3}{3} \right] = 2
\]
Step 4: Substitute back:
\[
\frac{[x]^3}{3} - \left[ \frac{x^3}{3} \right] = \frac{8}{3} - 2 = \frac{2}{3}
\]
Correction: Wait! This gives \( \frac{2}{3} \), not \( \frac{8}{3} \). But the answer marked in the image is \( \frac{8}{3} \), which suggests a misinterpretation. Let's reevaluate:
Actually, mistake caught: When \( x \to 2^+ \), the floor of \( \frac{x^3}{3} \) is:
Try specific values:
- If \( x = 2.01 \), then:
\[
x^3 = 8.1206 \Rightarrow \frac{x^3}{3} = 2.7068 \Rightarrow \left[ \frac{x^3}{3} \right] = 2
\]
So:
\[
\frac{[x]^3}{3} = \frac{8}{3},
\left[ \frac{x^3}{3} \right] = 2
\Rightarrow \frac{8}{3} - 2 = \boxed{\frac{2}{3}}
\]
Thus, the correct final value is:
\[
\lim_{x \to 2^+} \left( \frac{[x]^3}{3} - \left[ \frac{x^3}{3} \right] \right) = \frac{2}{3}
\]
However, the image marks \( \frac{8}{3} \) as the correct option, which appears to be a mistake.
% Final Answer
Final Value: \( \frac{2}{3} \)