The given polynomial equation is:
\[ a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1}x + a_n = 0. \]
The root \( \cos \theta + i \sin \theta \) can be represented in exponential form using Euler’s formula:
\[ x = e^{i\theta}. \]
Substitute \( x = e^{i\theta} \) into the polynomial:
\[ a_0 (e^{i\theta})^n + a_1 (e^{i\theta})^{n-1} + \cdots + a_{n-1}(e^{i\theta}) + a_n = 0. \]
Simplify the powers of \( e^{i\theta} \):
\[ a_0 e^{in\theta} + a_1 e^{i(n-1)\theta} + \cdots + a_{n-1} e^{i\theta} + a_n = 0. \]
Separate the real and imaginary parts of the equation:
\[ \text{Real part: } a_0 \cos(n\theta) + a_1 \cos((n-1)\theta) + \cdots + a_{n-1} \cos(\theta) + a_n = 0, \] \[ \text{Imaginary part: } a_0 \sin(n\theta) + a_1 \sin((n-1)\theta) + \cdots + a_{n-1} \sin(\theta) = 0. \]
From the imaginary part:
\[ a_0 \sin(n\theta) + a_1 \sin((n-1)\theta) + \cdots + a_n \sin(0) = 0. \]
Since \( \sin(0) = 0 \), the term involving \( a_n \) vanishes. Therefore:
\[ a_1 \sin(\theta) + a_2 \sin(2\theta) + \cdots + a_n \sin(n\theta) = 0. \]
Conclusion: The value of \( a_1 \sin \theta + a_2 \sin 2\theta + \cdots + a_n \sin n\theta \) is:
\[ 0. \]
A beam of light of wavelength \(\lambda\) falls on a metal having work function \(\phi\) placed in a magnetic field \(B\). The most energetic electrons, perpendicular to the field, are bent in circular arcs of radius \(R\). If the experiment is performed for different values of \(\lambda\), then the \(B^2 \, \text{vs} \, \frac{1}{\lambda}\) graph will look like (keeping all other quantities constant).