The given polynomial equation is:
\[ a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1}x + a_n = 0. \]
The root \( \cos \theta + i \sin \theta \) can be represented in exponential form using Euler’s formula:
\[ x = e^{i\theta}. \]
Substitute \( x = e^{i\theta} \) into the polynomial:
\[ a_0 (e^{i\theta})^n + a_1 (e^{i\theta})^{n-1} + \cdots + a_{n-1}(e^{i\theta}) + a_n = 0. \]
Simplify the powers of \( e^{i\theta} \):
\[ a_0 e^{in\theta} + a_1 e^{i(n-1)\theta} + \cdots + a_{n-1} e^{i\theta} + a_n = 0. \]
Separate the real and imaginary parts of the equation:
\[ \text{Real part: } a_0 \cos(n\theta) + a_1 \cos((n-1)\theta) + \cdots + a_{n-1} \cos(\theta) + a_n = 0, \] \[ \text{Imaginary part: } a_0 \sin(n\theta) + a_1 \sin((n-1)\theta) + \cdots + a_{n-1} \sin(\theta) = 0. \]
From the imaginary part:
\[ a_0 \sin(n\theta) + a_1 \sin((n-1)\theta) + \cdots + a_n \sin(0) = 0. \]
Since \( \sin(0) = 0 \), the term involving \( a_n \) vanishes. Therefore:
\[ a_1 \sin(\theta) + a_2 \sin(2\theta) + \cdots + a_n \sin(n\theta) = 0. \]
Conclusion: The value of \( a_1 \sin \theta + a_2 \sin 2\theta + \cdots + a_n \sin n\theta \) is:
\[ 0. \]
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is: