If \( A = \begin{bmatrix} 1 & 5 \\ \lambda & 10 \end{bmatrix} \), \( A^{-1} = \alpha A + \beta I \) and \( \alpha + \beta = -2 \), then \( 4\alpha^2 + \beta^2 + \lambda^2 \) is equal to:
Given:
\[ |A - xI| = 0 \quad \Rightarrow \quad \left| \begin{array}{cc} 1 - x & 5 \\ \lambda & 10 - x \end{array} \right| = 0 \quad \Rightarrow \quad x^2 - 11x + 10 - 5\lambda = 0 \]
From this, we get the equation:
\[ (10 - 5\lambda) A^{-1} = -A + 11I \]
From the equation above, we derive:
\[ \alpha = \frac{-1}{10 - 5\lambda} \quad \text{and} \quad \beta = \frac{+11}{10 - 5\lambda} \]
Now solving for \(\alpha + \beta = -2\):
\[ \frac{10}{10 - 5\lambda} = -2 \quad \Rightarrow \quad 10 - 5\lambda = -5 \quad \Rightarrow \quad \lambda = 3 \]
Therefore:
\[ \alpha = \frac{1}{5} \quad \text{and} \quad \beta = \frac{-11}{5} \]
Finally, we calculate:
\[ 4\alpha^2 + \beta^2 + \lambda^2 = \frac{4}{25} + \frac{121}{25} + 3^2 = 14 \]
The final answer is 14.
A, B, C, D are square matrices such that A + B is symmetric, A - B is skew-symmetric, and D is the transpose of C.
If
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix} \]
and
\[ C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]
then the matrix \( B + D \) is:
Given matrices \( A \) and \( B \) where:
and the condition:
If matrix \( C \) is defined as:
then the trace of \( C \) is:
Matrix Inverse Sum Calculation
Given the matrix:
A = | 1 2 2 | | 3 2 3 | | 1 1 2 |
The inverse matrix is represented as:
A-1 = | a11 a12 a13 | | a21 a22 a23 | | a31 a32 a33 |
The sum of all elements in A-1 is: