Question:

If \(\begin{array}{l}\int_{0}^{\sqrt{3}}\frac{15x^3}{\sqrt{1+x^2 + \sqrt{(1+x^2)^3}}}dx = \alpha \sqrt{2}+\beta\sqrt{3},\end{array}\)where \(α, β\) are integers, then \(α + β\) is equal to
 

Updated On: Dec 31, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Put  

\[\begin{array}{l} x = \tan \theta \Rightarrow dx = \sec^2 \theta \, d\theta \end{array}\]\[\Rightarrow I = \int_{0}^{\frac{\pi}{3}} \frac{15 \tan^3 \theta \cdot \sec^2 \theta \, d\theta}{\sqrt{1 + \tan^2 \theta + \sqrt{\sec^6 \theta}}}\]\[\Rightarrow I = \int_{0}^{\frac{\pi}{3}} \frac{15 \tan^2 \theta \sec^2 \theta \, d\theta}{\sec \theta \sqrt{1 + \sec \theta}}\]\[\Rightarrow I = \int_{0}^{\frac{\pi}{3}} \frac{15 (\sec^2 \theta - 1) \sec \theta \tan \theta \, d\theta}{\sqrt{1 + \sec \theta}}\]

Now put \(1 + \sec \theta = t^2\)

\[\Rightarrow \sec \theta \tan \theta \, d\theta = 2t \, dt\]\[\Rightarrow I = \int_{\sqrt{2}}^{\sqrt{3}} \frac{15 \left( (t^2 - 1)^2 - 1 \right) 2t \, dt}{t}\]\[\Rightarrow I = 30 \int_{\sqrt{2}}^{\sqrt{3}} \left( t^4 - 2t^2 + 1 - 1 \right) dt\]\[\Rightarrow I = 30 \int_{\sqrt{2}}^{\sqrt{3}} \left( t^4 - 2t^2 \right) dt\]\[\Rightarrow I = 30 \left( \frac{t^5}{5} - \frac{2t^3}{3} \right)_{\sqrt{2}}^{\sqrt{3}}\]\[= 30 \left[ \left( \frac{9}{5} \sqrt{3} - 2 \sqrt{3} \right) - \left( \frac{4 \sqrt{2}}{5} - \frac{4 \sqrt{2}}{3} \right) \right]\]\[= (54 \sqrt{3} - 60 \sqrt{3}) - (24 \sqrt{2} - 40 \sqrt{2})\]\[= 16 \sqrt{2} - 6 \sqrt{3}\]\[\therefore \alpha = 16 \text{ and } \beta = -6\]\[\alpha + \beta = 10\]
Was this answer helpful?
2
1

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Integration by Partial Fractions

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,