Put
\[\begin{array}{l} x = \tan \theta \Rightarrow dx = \sec^2 \theta \, d\theta \end{array}\]\[\Rightarrow I = \int_{0}^{\frac{\pi}{3}} \frac{15 \tan^3 \theta \cdot \sec^2 \theta \, d\theta}{\sqrt{1 + \tan^2 \theta + \sqrt{\sec^6 \theta}}}\]\[\Rightarrow I = \int_{0}^{\frac{\pi}{3}} \frac{15 \tan^2 \theta \sec^2 \theta \, d\theta}{\sec \theta \sqrt{1 + \sec \theta}}\]\[\Rightarrow I = \int_{0}^{\frac{\pi}{3}} \frac{15 (\sec^2 \theta - 1) \sec \theta \tan \theta \, d\theta}{\sqrt{1 + \sec \theta}}\]Now put \(1 + \sec \theta = t^2\)
\[\Rightarrow \sec \theta \tan \theta \, d\theta = 2t \, dt\]\[\Rightarrow I = \int_{\sqrt{2}}^{\sqrt{3}} \frac{15 \left( (t^2 - 1)^2 - 1 \right) 2t \, dt}{t}\]\[\Rightarrow I = 30 \int_{\sqrt{2}}^{\sqrt{3}} \left( t^4 - 2t^2 + 1 - 1 \right) dt\]\[\Rightarrow I = 30 \int_{\sqrt{2}}^{\sqrt{3}} \left( t^4 - 2t^2 \right) dt\]\[\Rightarrow I = 30 \left( \frac{t^5}{5} - \frac{2t^3}{3} \right)_{\sqrt{2}}^{\sqrt{3}}\]\[= 30 \left[ \left( \frac{9}{5} \sqrt{3} - 2 \sqrt{3} \right) - \left( \frac{4 \sqrt{2}}{5} - \frac{4 \sqrt{2}}{3} \right) \right]\]\[= (54 \sqrt{3} - 60 \sqrt{3}) - (24 \sqrt{2} - 40 \sqrt{2})\]\[= 16 \sqrt{2} - 6 \sqrt{3}\]\[\therefore \alpha = 16 \text{ and } \beta = -6\]\[\alpha + \beta = 10\]If \[ \int (\sin x)^{-\frac{11}{2}} (\cos x)^{-\frac{5}{2}} \, dx \] is equal to \[ -\frac{p_1}{q_1}(\cot x)^{\frac{9}{2}} -\frac{p_2}{q_2}(\cot x)^{\frac{5}{2}} -\frac{p_3}{q_3}(\cot x)^{\frac{1}{2}} +\frac{p_4}{q_4}(\cot x)^{-\frac{3}{2}} + C, \] where \( p_i, q_i \) are positive integers with \( \gcd(p_i,q_i)=1 \) for \( i=1,2,3,4 \), then the value of \[ \frac{15\,p_1 p_2 p_3 p_4}{q_1 q_2 q_3 q_4} \] is ___________.

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
