Question:

If \(\begin{array}{l}\int_{0}^{\sqrt{3}}\frac{15x^3}{\sqrt{1+x^2 + \sqrt{(1+x^2)^3}}}dx = \alpha \sqrt{2}+\beta\sqrt{3},\end{array}\)where \(α, β\) are integers, then \(α + β\) is equal to
 

Updated On: Sep 18, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Put 
\(\begin{array}{l}x = tan\theta \Rightarrow dx = sec^2\theta~ d\theta\end{array}\)
\(\begin{array}{l}\Rightarrow I = \int_{0}^{\frac{\pi}{3}}\frac{15\tan^3\theta . \sec^2\theta\ d\theta}{\sqrt{1+\tan^2\theta + \sqrt{\sec^6\theta}}}\end{array}\)
\(\begin{array}{l}\Rightarrow I = \int_{0}^{\frac{\pi}{3}}\frac{15\tan^2\theta \sec^2 \theta \ d\theta}{\sec \theta \sqrt{1+ \sec \theta}}\end{array}\)
\(\begin{array}{l}\Rightarrow I = \int_{0}^{\frac{\pi}{3}}\frac{15(\sec^2 \theta -1)\sec \theta \tan \theta \ d\theta}{\left(\sqrt{1+\sec \theta}\right)}\end{array}\)
Now put 1 + secθ = t2
\(\begin{array}{l}\Rightarrow sec~\theta ~tan~\theta~ d\theta = 2tdt\end{array}\)
\(\begin{array}{l}\Rightarrow I = \int_{\sqrt{2}}^{\sqrt{3}}\frac{15((t^2-1)^2-1)2t \ dt}{t}\end{array}\)
\(\begin{array}{l}\Rightarrow I = 30\int_{\sqrt{2}}^{\sqrt{3}}\left(t^4-2t^2 + 1-1\right)dt\end{array}\)
\(\begin{array}{l}\Rightarrow I = 30\int_{\sqrt{2}}^{\sqrt{3}}\left(t^4-2t^2 + 1-1\right)dt\end{array}\)
\(\begin{array}{l}\Rightarrow I = 30 \left(\frac{t^5}{5}-\frac{2t^3}{3}\right)_{\sqrt{2}}^{\sqrt{3}}\end{array}\)
\(\begin{array}{l}=30\left[\left(\frac{9}{5}\sqrt{3}-2\sqrt{3}\right)-\left(\frac{4\sqrt{2}}{5}-\frac{4\sqrt{2}}{3}\right)\right]\end{array}\)
\(\begin{array}{l}=(54\sqrt{3}-60\sqrt{3})-(24\sqrt{2}-40\sqrt{2})\end{array}\)
\(\begin{array}{l}=16\sqrt{2}-6\sqrt{3}\end{array}\)
\(\begin{array}{l} \therefore \alpha = 16 ~\text{and}~ \beta = – 6\\ \alpha + \beta = 10.\end{array}\)
Was this answer helpful?
0
1

Concepts Used:

Integration by Partial Fractions

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,