Given:
The following series of calculations are provided. Let's go step by step:
Step 1:
\((\sqrt{2})^x = 2^x \Rightarrow x = 0 \Rightarrow \alpha = 1\)
Step 2:
We have \( z = \frac{\pi}{4} (1 + i)^4 \left[ \frac{\sqrt{\pi - \pi i - \sqrt{\pi}}}{\pi + 1} + \frac{\sqrt{\pi - i - \pi i - \sqrt{\pi}}}{1 + \pi} \right] \), which simplifies to \( z = -\frac{\pi}{2} (1 + 4i + 6i^2 + 4i^3 + 1) = 2\pi \).
Step 3:
Next, we calculate \( \beta = \frac{2\pi}{\pi} = 4 \).
Step 4:
For the distance between point (1, 4) and the line \(4x - 3y = 7\), we use the distance formula:
\[ d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}} \]
Substituting \( A = 4, B = -3, C = -7 \) and point (x₁, y₁) = (1, 4), we calculate:
\[ d = \frac{|4(1) - 3(4) - 7|}{\sqrt{4^2 + (-3)^2}} = \frac{|4 - 12 - 7|}{5} = \frac{15}{5} = 3 \]
Final Answer: The distance from the point (1, 4) to the line \(4x - 3y = 7\) is \( 3 \).
\[ (\sqrt{2})^x = 2^x \implies x = 0 \implies \alpha = 1 \]
\[ z = \frac{\pi}{4}(1 + i)^4 \]
\[ = \frac{-\pi i}{2} \left[ \sqrt{\frac{\pi - \pi i - \sqrt{\pi}}{\pi + 1}} + \sqrt{\frac{\pi - i - \pi i - \sqrt{\pi}}{1 + \pi}} \right] \]
\[ = \frac{-\pi i}{2} \left( 1 + 4i + 6i^2 + 4i^3 + 1 \right) \]
\[ = 2\pi i \beta = \frac{2\pi}{\pi/2} = 4 \]
Distance from \( (1, 4) \) to \( 4x - 3y = 7 \) will be:
\[ \frac{15}{5} = 3 \]
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.