The correct option is (C): $\sqrt{2} f \left(\frac{ a }{2}\right)= f ^{\prime}\left(\frac{ a }{2}\right)$
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Considering Bohr’s atomic model for hydrogen atom :
(A) the energy of H atom in ground state is same as energy of He+ ion in its first excited state.
(B) the energy of H atom in ground state is same as that for Li++ ion in its second excited state.
(C) the energy of H atom in its ground state is same as that of He+ ion for its ground state.
(D) the energy of He+ ion in its first excited state is same as that for Li++ ion in its ground state.


A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is: 
Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.


A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.


Read More: Limits and Derivatives