Given the matrix \( A \), the determinant is calculated as:
\[ |A| = \frac{1}{5!6!7!} \begin{vmatrix} 1 & 6 & 42 \\ 1 & 7 & 56 \\ 1 & 8 & 72 \end{vmatrix} \]
The row transformations are applied as follows:
First, perform the operation \( R_3 \to R_3 - R_2 \) and then \( R_2 \to R_2 - R_1 \), resulting in:
\[ \begin{vmatrix} 1 & 8 & 42 \\ 0 & 1 & 14 \\ 0 & 1 & 16 \end{vmatrix} \]
The determinant of the modified matrix is:
\[ |A| = 2 \]
Next, the adjugate of the matrix \( 2A \) is calculated. The formula for the adjugate of a matrix \( A \) is given by:
\[ \text{adj}(2A) = 2A^{(n-1)^2} \]
For a \( 3 \times 3 \) matrix, \( n = 3 \), so the formula becomes:
\[ \text{adj}(2A) = 2A^4 \]
The determinant of the adjugate is calculated as:
\[ | \text{adj}(2A) | = 2 A^4 \]
Substituting the previously calculated determinant \( |A| = 2 \), we get:
\[ = (2^3 |A|)^4 = 2^{12} |A|^4 = 2^{12} \times 2^4 = 2^{16} \]
If the matrix $ A $ is such that $ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \text{ then } A \text{ is equal to} $
If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad A \, \text{adj} \, A = A A^t, \quad \text{then} \, 5a + b \, \text{is equal to}$
If $3A + 4B^{t} = \left( \begin{array}{cc} 7 & -10 \\ 0 & 6 \end{array} \right) $ and $ 2B - 3A^{t} = \left( \begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array} \right) $, then find $ (5B)^{t}$: