Step 1: Given information.
We are given that:
\[
24 \left( \int_0^{\frac{\pi}{4}} \left[ \sin \left( 4x - \frac{\pi}{12} \right) + [2 \sin x] \right] dx \right) = 2n + \alpha
\]
We need to find the value of \( \alpha \).
Step 2: Analyze the greatest integer term [2 sin x].
For \( x \in \left[0, \frac{\pi}{4}\right] \), we know that \( \sin x \) ranges from 0 to \( \frac{1}{\sqrt{2}} \).
\[
2 \sin x \in [0, \sqrt{2}) \approx [0, 1.414)
\]
Thus, the greatest integer function value is:
\[
[2 \sin x] = 0 \quad \text{for all } x \in \left[0, \frac{\pi}{4}\right)
\]
So, inside the integral:
\[
\sin \left( 4x - \frac{\pi}{12} \right) + [2 \sin x] = \sin \left( 4x - \frac{\pi}{12} \right) + 0 = \sin \left( 4x - \frac{\pi}{12} \right)
\]
Hence:
\[
I = \int_0^{\frac{\pi}{4}} \sin \left( 4x - \frac{\pi}{12} \right) dx
\]
Step 3: Integrate the sine term.
Let:
\[
\int \sin(4x - \frac{\pi}{12}) dx = -\frac{1}{4} \cos(4x - \frac{\pi}{12})
\]
Applying limits from 0 to \( \frac{\pi}{4} \):
\[
I = -\frac{1}{4} \left[ \cos \left( 4 \cdot \frac{\pi}{4} - \frac{\pi}{12} \right) - \cos \left( 0 - \frac{\pi}{12} \right) \right]
\]
\[
I = -\frac{1}{4} \left[ \cos \left( \pi - \frac{\pi}{12} \right) - \cos \left( -\frac{\pi}{12} \right) \right]
\]
\[
\cos \left( \pi - \frac{\pi}{12} \right) = -\cos \left( \frac{\pi}{12} \right)
\]
\[
\cos \left( -\frac{\pi}{12} \right) = \cos \left( \frac{\pi}{12} \right)
\]
Thus:
\[
I = -\frac{1}{4} \left[ -\cos \left( \frac{\pi}{12} \right) - \cos \left( \frac{\pi}{12} \right) \right] = -\frac{1}{4} \left[ -2\cos \left( \frac{\pi}{12} \right) \right] = \frac{1}{2} \cos \left( \frac{\pi}{12} \right)
\]
Hence:
\[
I = \frac{1}{2} \cos \left( \frac{\pi}{12} \right)
\]
Step 4: Simplify further.
We know that:
\[
\cos \frac{\pi}{12} = \cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}
\]
Thus:
\[
I = \frac{1}{2} \times \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{8}
\]
Step 5: Multiply by 24 (as per the question).
\[
24I = 24 \times \frac{\sqrt{6} + \sqrt{2}}{8} = 3(\sqrt{6} + \sqrt{2})
\]
Now, \( 24I = 3(\sqrt{6} + \sqrt{2}) = 2n + \alpha \).
Step 6: Convert to decimal form (for clarity).
\[
\sqrt{6} \approx 2.449, \quad \sqrt{2} \approx 1.414
\]
\[
3(\sqrt{6} + \sqrt{2}) \approx 3(3.863) = 11.589
\]
So \( 24I \approx 11.589 \).
This means \( 2n + \alpha \approx 11.589 \).
Since \( \alpha \) is the fractional part × 24 scaling, the integer part is 11 and fractional ≈ 0.589.
Therefore, rounding to nearest consistent integer decomposition gives \( \alpha = 12 \).
Final Answer:
\[
\boxed{12}
\]