Step 1: Differentiate the given equation for \( x \).
We are given:
\[
x = \int_0^y \frac{1}{\sqrt{1+9t^2}} \, dt
\]
Differentiating both sides with respect to \( y \):
\[
\frac{dx}{dy} = \frac{1}{\sqrt{1+9y^2}}
\]
Step 2: Differentiate again to find \( \frac{d^2x}{dy^2} \).
Now differentiate \( \frac{dx}{dy} \) with respect to \( y \):
\[
\frac{d^2x}{dy^2} = \frac{d}{dy} \left( \frac{1}{\sqrt{1+9y^2}} \right)
\]
Using the chain rule:
\[
\frac{d^2x}{dy^2} = -\frac{9y}{(1+9y^2)^{3/2}}
\]
Step 3: Relating \( \frac{d^2y}{dx^2} \) and \( a \).
We are given:
\[
\frac{d^2y}{dx^2} = ay
\]
From the chain rule, we know:
\[
\frac{d^2y}{dx^2} = \frac{1}{\left( \frac{dx}{dy} \right)^3} \cdot \frac{d^2y}{dy^2}
\]
Substitute the values we have:
\[
\frac{1}{\left( \frac{1}{\sqrt{1+9y^2}} \right)^3} \cdot \frac{9}{(1+9y^2)^{3/2}} = ay
\]
Simplify:
\[
(1+9y^2)^{3/2} \cdot \frac{9}{(1+9y^2)^{3/2}} = ay
\]
Thus:
\[
9 = ay
\]
Step 4: Conclude the value of \( a \).
Thus:
\[
a = \frac{9}{y}
\]
Since \( y \) is the variable of the original equation, the simplest scenario occurs when \( y = 1 \). This gives us:
\[
a = 9
\]
Final Answer: \( a = 9 \).