The energy of the incident photon is: \[ E = \frac{1240}{\lambda} = \frac{1240}{550} \approx 2.25 \, \text{eV} \] For the photoelectric effect to occur, the energy of the photon must be greater than the work function of the metal.
For Cs (work function = 1.9 eV):
Since \( 2.25 \, \text{eV} > 1.9 \, \text{eV} \), photoelectric effect is possible for Cs.
For Li (work function = 2.5 eV):
Since \( 2.25 \, \text{eV} <2.5 \, \text{eV} \), photoelectric effect is not possible for Li.
Thus, the answer is \( \boxed{\text{Cs only}} \).
Energy of incident photons: The energy of a photon is given by \[ E = \frac{hc}{\lambda}. \] Using \( h = 6.626\times10^{-34}\ \text{Js},\ c = 3\times10^8\, \text{m/s},\ \lambda = 550\times10^{-9}\ \text{m} \): \[ E = \frac{6.626\times10^{-34}\times3\times10^8}{550\times10^{-9}} = 3.613\times10^{-19}\,\text{J}. \] Converting to electron volts (\(1\,\text{eV}=1.602\times10^{-19}\,\text{J}\)): \[ E = \frac{3.613\times10^{-19}}{1.602\times10^{-19}} = 2.26\,\text{eV}. \]
✅ Option 2: Cs only
Given below are two statements: one is labelled as Assertion (A) and the other one is labelled as Reason (R).
Assertion (A): Emission of electrons in the photoelectric effect can be suppressed by applying a sufficiently negative electron potential to the photoemissive substance.
Reason (R): A negative electric potential, which stops the emission of electrons from the surface of a photoemissive substance, varies linearly with the frequency of incident radiation.
In light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements:
Statement I: In the oxalic acid vs KMnO$_4$ (in the presence of dil H$_2$SO$_4$) titration the solution needs to be heated initially to 60°C, but no heating is required in Ferrous ammonium sulphate (FAS) vs KMnO$_4$ titration (in the presence of dil H$_2$SO$_4$).
Statement II: In oxalic acid vs KMnO$_4$ titration, the initial formation of MnSO$_4$ takes place at high temperature, which then acts as catalyst for further reaction. In the case of FAS vs KMnO$_4$, heating oxidizes Fe$^{2+}$ into Fe$^{3+}$ by oxygen of air and error may be introduced in the experiment.
In the light of the above statements, choose the correct answer from the options given below:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below: