We are tasked with solving the equation \( x^2 + 3x + 2 = \min \left( |x - 3|, |x + 2| \right) \). First, we analyze the behavior of the minimum function, which requires us to consider the cases for \( |x - 3| \) and \( |x + 2| \).
After checking these cases, we find that the equation has exactly one real solution.
Final Answer: \( 1 \).