Given below are two statements:
Statement (I): Alcohols are formed when alkyl chlorides are treated with aqueous potassium hydroxide by elimination reaction.
Statement (II): In alcoholic potassium hydroxide, alkyl chlorides form alkenes by abstracting the hydrogen from the $ \beta $-carbon.
In the light of the above statements, choose the most appropriate answer from the options given below:
Statement (I) is incorrect because alkyl chlorides react with aqueous potassium hydroxide to undergo substitution (SN) reactions, not elimination. Alcohols are typically formed through substitution reactions, not elimination.
Statement (II) is correct because in alcoholic potassium hydroxide, alkyl chlorides undergo elimination (E2) reactions, forming alkenes by abstracting the hydrogen from the \( \beta \)-carbon.
Thus, the correct answer is (2).
Br\(_2\)/CS\(_2\)
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
In the following substitution reaction:
In which of the following reactions, major product is matched correctly?
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.