Given below are two statements:
Statement (I): Alcohols are formed when alkyl chlorides are treated with aqueous potassium hydroxide by elimination reaction.
Statement (II): In alcoholic potassium hydroxide, alkyl chlorides form alkenes by abstracting the hydrogen from the $ \beta $-carbon.
In the light of the above statements, choose the most appropriate answer from the options given below:
Statement (I) is incorrect because alkyl chlorides react with aqueous potassium hydroxide to undergo substitution (SN) reactions, not elimination. Alcohols are typically formed through substitution reactions, not elimination.
Statement (II) is correct because in alcoholic potassium hydroxide, alkyl chlorides undergo elimination (E2) reactions, forming alkenes by abstracting the hydrogen from the \( \beta \)-carbon.
Thus, the correct answer is (2).
Draw the structure of the major monohalo product for each of the following reactions:
Propene to 1-Iodopropane
Br\(_2\)/CS\(_2\)
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is: