Fortification of food with iron is done using $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$. The mass in grams of the $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ required to achieve 12 ppm of iron in 150 kg of wheat is _______ (Nearest integer).} (Given : Molar mass of $\mathrm{Fe}, \mathrm{S}$ and O respectively are 56,32 and $16 \mathrm{~g} \mathrm{~mol}^{-1}$ )
To determine the mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ needed to achieve 12 ppm of iron in 150 kg of wheat, follow these steps:
Define ppm: 1 ppm is 1 mg of solute per 1 kg of solution. Therefore, for 12 ppm of iron in 150 kg of wheat, the mass of iron needed is:
\( \text{Mass of Fe} = 12 \,\text{mg/kg} \times 150 \,\text{kg} = 1800 \,\text{mg} = 1.8 \,\text{g} \)
To find the mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, start by calculating its molar mass:
| Element | Atomic Mass (g/mol) | Atoms | Total (g/mol) |
| Fe | 56 | 1 | 56 |
| S | 32 | 1 | 32 |
| O | 16 | 11 (4+7) | 176 |
| H | 1 | 14 (2x7) | 14 |
| Total | 278 g/mol | ||
Calculate the moles of $\mathrm{Fe}$ in 1.8 g:
\( \text{Moles of Fe} = \frac{1.8 \,\text{g}}{56 \,\text{g/mol}} \approx 0.03214 \,\text{mol} \)
Convert moles of $\mathrm{Fe}$ to moles of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ since each unit contains one Fe atom:
\( \text{Moles of } \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} = 0.03214 \,\text{mol} \)
Find the mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$:
\( \text{Mass} = 0.03214 \,\text{mol} \times 278 \,\text{g/mol} \approx 8.936 \,\text{g} \)
Round to the nearest integer: 9 g
Verify the solution is within the range 9–9. It is correct.
Therefore, the mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ required is 9 g.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: