Molar masses: \(\mathrm{M(C_4H_{10}) = 58\ g\ mol^{-1}}\), \(\mathrm{M(O_2) = 32\ g\ mol^{-1}}\).
Moles of butane: \(\displaystyle n_{\mathrm{C_4H_{10}}}=\frac{174000}{58}=3000\ \text{mol}\).
Moles of oxygen: \(\displaystyle n_{\mathrm{O_2}}=\frac{320000}{32}=10000\ \text{mol}\).
Required O2 for 3000 mol butane: \(3000\times 6.5=19500\) mol > available 10000 mol ⇒ O2 is limiting.
Moles of butane that actually react: \(\displaystyle n_{\text{react}}=\frac{10000}{6.5}=1538.46\ \text{mol}\).
From stoichiometry, water formed: \(5\) mol H2O per mol butane ⇒
\(\displaystyle n_{\mathrm{H_2O}}=5\times 1538.46=7692.31\ \text{mol}\).
Mass of water: \(\displaystyle m=7692.31\times 18=138461.6\ \text{g}=138.46\ \text{kg}\).
Density \(=1\ \text{g mL}^{-1}\) ⇒ volume \(=138461.6\ \text{mL}=138.46\ \text{L}\).
Final Answer:
\[ \boxed{138\ \text{L}} \]
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 