Step 1: Calculate moles of reactants.
Moles of \( C_4H_{10} = \frac{174 \times 10^3 \, g}{58 \, g/mol} = 3000 \, mol \)
Moles of \( O_2 = \frac{320 \times 10^3 \, g}{32 \, g/mol} = 10000 \, mol \)
Step 2: Identify the limiting reactant.
From the balanced equation, 1 mol \( C_4H_{10} \) reacts with 6.5 mol \( O_2 \).
3000 mol \( C_4H_{10} \) requires \( 3000 \times 6.5 = 19500 \, mol \, O_2 \).
Since we have only 10000 mol \( O_2 \), oxygen is the limiting reactant.
Step 3: Calculate moles of water formed.
From the stoichiometry, 6.5 mol \( O_2 \) produces 5 mol \( H_2O \).
10000 mol \( O_2 \) produces \( \frac{5}{6.5} \times 10000 = \frac{10}{13} \times 10000 \approx 7692.3 \, mol \, H_2O \).
Step 4: Calculate the volume of water formed.
Mass of \( H_2O = 7692.3 \, mol \times 18 \, g/mol \approx 138461.4 \, g \).
Volume of \( H_2O = \frac{138461.4 \, g}{1 \, g/mL} = 138461.4 \, mL = 138.4614 \, L \).
Nearest integer = 138 L.