Given that the molar mass of sulphur (S) is 32 g/mol and that of barium sulphate (BaSO\(_4\)) is 233 g/mol, the mass of sulphur in the compound can be calculated from the mass of barium sulphate produced:
The moles of barium sulphate formed: \[ \text{Moles of BaSO}_4 = \frac{0.40 \, \text{g}}{233 \, \text{g/mol}} = 0.00172 \, \text{mol} \]
The moles of sulphur in the compound are equal to the moles of BaSO\(_4\) because of the 1:1 stoichiometry of BaSO\(_4\) and sulphur.
The mass of sulphur is: \[ \text{Mass of S} = 0.00172 \, \text{mol} \times 32 \, \text{g/mol} = 0.05504 \, \text{g} \]
The percentage of sulphur in the compound is: \[ % \text{S} = \frac{0.05504 \, \text{g}}{0.20 \, \text{g}} \times 100 = 27.5% \] Thus, the correct percentage of sulphur is \(27.5\%.\)
Fortification of food with iron is done using $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$. The mass in grams of the $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ required to achieve 12 ppm of iron in 150 kg of wheat is _______ (Nearest integer).} (Given : Molar mass of $\mathrm{Fe}, \mathrm{S}$ and O respectively are 56,32 and $16 \mathrm{~g} \mathrm{~mol}^{-1}$ )
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
