Given that the molar mass of sulphur (S) is 32 g/mol and that of barium sulphate (BaSO\(_4\)) is 233 g/mol, the mass of sulphur in the compound can be calculated from the mass of barium sulphate produced:
The moles of barium sulphate formed: \[ \text{Moles of BaSO}_4 = \frac{0.40 \, \text{g}}{233 \, \text{g/mol}} = 0.00172 \, \text{mol} \]
The moles of sulphur in the compound are equal to the moles of BaSO\(_4\) because of the 1:1 stoichiometry of BaSO\(_4\) and sulphur.
The mass of sulphur is: \[ \text{Mass of S} = 0.00172 \, \text{mol} \times 32 \, \text{g/mol} = 0.05504 \, \text{g} \]
The percentage of sulphur in the compound is: \[ % \text{S} = \frac{0.05504 \, \text{g}}{0.20 \, \text{g}} \times 100 = 27.5% \] Thus, the correct percentage of sulphur is \(27.5\%.\)
Among the following, choose the ones with an equal number of atoms.
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.