Find the vector equation of the plane passing through the intersection of the planes
\(\overrightarrow r.(2\hat i+2\hat j-3\hat k)=7\),\(\overrightarrow r.(2\hat i+5\hat j+3\hat k)=9\) and through the point ( 2, 1, 3 ).
The equations of the planes are \(\overrightarrow r.(2\hat i+2\hat j-3\hat k)=7\) and \(\overrightarrow r.(2\hat i+5\hat j+3\hat k)=9\)
\(\Rightarrow \overrightarrow r.(2\hat i+2\hat j-3\hat k)-7=0\)...(1)
\(\Rightarrow\overrightarrow r.(2\hat i+5\hat j+3\hat k)-9=0\)...(2)
The equation of any plane through the intersection of the planes given in equation (1) and (2) is given by,
[ \(\overrightarrow r.(2\hat i+2\hat j-3\hat k)=7\) ]+\(\lambda\) [ \(\overrightarrow r.(2\hat i+5\hat j+3\hat k)=9\) ]=0, where \(\lambda\in\) R
\(\overrightarrow r.[(2\hat i+2\hat j-3\hat k)\)+\(\lambda(2\hat i+5\hat j+3\hat k)]=9\lambda+7\)
\(\overrightarrow r[(2+2\lambda)\hat i+(2+5\lambda)\hat j+(3\lambda-3)\hat k]=9\lambda+7\) ...(3)
The plane passes through the point (2,1, 3).
Therefore, its position vector is given by, \(\overrightarrow r.2\hat i+2\hat j+3\hat k\)
Substituting in equation (3), we obtain
\((2\hat i+2\hat j-3\hat k).\)\([(2+2\lambda)\hat i+(2+5\lambda)\hat j+(3\lambda-3)\hat k]=9\lambda+7\)
\(\Rightarrow[(2+2\lambda)+(2+5\lambda)+(3\lambda-3)]=9\lambda+7\)
\(\Rightarrow\) 18λ-3=9λ+7
\(\Rightarrow\) 9λ=10
\(\Rightarrow\) λ=\(\frac{10}{9}\)
Substituting \(\lambda=\frac{10}{9}\) in equation(3), we obtain
\(\overrightarrow r\bigg(\frac{38}{9}\hat i+\frac{68}{9}\hat j+\frac{3}{9}\hat k\bigg)=17\)
\(\Rightarrow \overrightarrow r (38\hat i+68\hat j+3\hat k)=153\)
This is the vector equation of the required plane.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: