Find the vector equation of the line passing through(1, 2, 3)and parallel to the planes \(\vec r.=(\hat i-\hat j+2\hat k)=5\) and \(\vec r.(3\hat i+\hat j+\hat k)=6\).
Let the required line be parallel to vector \(\vec b\) given by,
\(\vec b=b_1\hat i+b_2\hat j+b_3\hat k\)
The position vector of the point (1, 2, 3) is
\(\vec a=\hat i+2\hat j+3\hat k\)
The equation of line passing through (1, 2, 3) and parallel to \(\vec b\) is given by,
\(\vec r=\vec a+λ\vec b\)
⇒\(\vec r =\)(\(\hat i+2\hat j+3\hat k\)) + λ(\(b_1\hat i+b_2\hat j+b_3\hat k\)) ...(1)
The equations of the given planes are
\(\vec r.(\hat i-\hat j+2\hat k)=5\) ...(2)
\(\vec r.(3\hat i+\hat j+\hat k)=6\) ...(3)
The line in equation (1) and plane in equation (2) are parallel.
Therefore, the normal to the plane of equation (2) and the given line are perpendicular.
\(⇒\)(\(\hat i-\hat j+2\hat k\)) . λ(\(b_1\hat i+b_2\hat j+b_3\hat k\)) = 0
\(⇒λ(b_1-b_2+2b_3)=0\)
\(⇒b_1-b_2+2b_3=0\) ...(4)
Similarly,
\((3\hat i+\hat j+\hat k).λ(b_1\hat i+b_2\hat j+b_3\hat k^)=0\)
\(⇒λ(3b_1+b_2+b_3)=0\)
\(⇒3b_ 1+b_2+b_3=0\) ...(5)
From equation (4) and (5), we obtain
\(\frac {b_1}{(-1)×1-1×2}\) = \(\frac {b_2}{2×3-1×1 }\)= \(\frac {b_3}{1×1-3(-1)}\)
\(⇒\frac {b_1}{-3} =\frac {b_2}{5} =\frac {b_3}{4}\)
Therefore, the direction ratios of \(\vec b\) are -3, 5 and 4.
\(∴b=b_1\hat i+b_2\hat j+b_3\hat k\)
\(b =-3\hat i+5\hat j+4\hat k\)
Substituting the values of \(\vec b\) in equation (1), we obtain
\(\vec r=(\hat i+2\hat j+3\hat k)+λ(-3\hat i+5\hat j+4\hat k)\)
This is the equation of the required line.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Let \(\alpha x+\beta y+y z=1\) be the equation of a plane passing through the point\((3,-2,5)\)and perpendicular to the line joining the points \((1,2,3)\) and \((-2,3,5)\) Then the value of \(\alpha \beta y\)is equal to ____
What is the Planning Process?