The required line passes through the origin.
Therefore, its position vector is given by, \(\vec a\)=\(\vec 0\)…………....(1)
The direction ratios of the line through the origin and (5,-2,3) are (5-0)=5, (-2-0)=-2, (3-0)=3
The lines are parallel to the vector given by the equation, b→5\(\hat i\)-2\(\hat j\)+3\(\hat k\)
The equation of the line in vector form through a point with position vector a and parallel to \(\vec b\) is,
\(\vec r = \vec a+\lambda \vec b\), λ∈R
⇒ \(\vec r=\vec 0+\lambda(5\vec i-2\vec j+3\vec k)\)
⇒ \(\vec r=\lambda(5\vec i-2\vec j+3\vec k)\)
The equation of the line through the point (x1,y1,z1) and direction ratios a,b,c is given by,
\(\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}\)
Therefore, the equation of the required line in the cartesian form is
\(\frac{x-0}{5}=\frac{y-0}{-2}=\frac{z-0}{3}\)
⇒\(\frac{x}{5}=\frac{y}{-2}=\frac{z}{3}\)
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
Aakash and Baadal entered into partnership on 1st October 2023 with capitals of Rs 80,00,000 and Rs 60,00,000 respectively. They decided to share profits and losses equally. Partners were entitled to interest on capital @ 10 per annum as per the provisions of the partnership deed. Baadal is given a guarantee that his share of profit, after charging interest on capital, will not be less than Rs 7,00,000 per annum. Any deficiency arising on that account shall be met by Aakash. The profit of the firm for the year ended 31st March 2024 amounted to Rs 13,00,000.
Prepare Profit and Loss Appropriation Account for the year ended 31st March 2024.

In a plane, the equation of a line is given by the popular equation y = m x + C. Let's look at how the equation of a line is written in vector form and Cartesian form.
Consider a line that passes through a given point, say ‘A’, and the line is parallel to a given vector '\(\vec{b}\)‘. Here, the line ’l' is given to pass through ‘A’, whose position vector is given by '\(\vec{a}\)‘. Now, consider another arbitrary point ’P' on the given line, where the position vector of 'P' is given by '\(\vec{r}\)'.
\(\vec{AP}\)=𝜆\(\vec{b}\)
Also, we can write vector AP in the following manner:
\(\vec{AP}\)=\(\vec{OP}\)–\(\vec{OA}\)
𝜆\(\vec{b}\) =\(\vec{r}\)–\(\vec{a}\)
\(\vec{a}\)=\(\vec{a}\)+𝜆\(\vec{b}\)
\(\vec{b}\)=𝑏1\(\hat{i}\)+𝑏2\(\hat{j}\) +𝑏3\(\hat{k}\)