The required line passes through the origin.
Therefore, its position vector is given by, \(\vec a\)=\(\vec 0\)…………....(1)
The direction ratios of the line through the origin and (5,-2,3) are (5-0)=5, (-2-0)=-2, (3-0)=3
The lines are parallel to the vector given by the equation, b→5\(\hat i\)-2\(\hat j\)+3\(\hat k\)
The equation of the line in vector form through a point with position vector a and parallel to \(\vec b\) is,
\(\vec r = \vec a+\lambda \vec b\), λ∈R
⇒ \(\vec r=\vec 0+\lambda(5\vec i-2\vec j+3\vec k)\)
⇒ \(\vec r=\lambda(5\vec i-2\vec j+3\vec k)\)
The equation of the line through the point (x1,y1,z1) and direction ratios a,b,c is given by,
\(\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}\)
Therefore, the equation of the required line in the cartesian form is
\(\frac{x-0}{5}=\frac{y-0}{-2}=\frac{z-0}{3}\)
⇒\(\frac{x}{5}=\frac{y}{-2}=\frac{z}{3}\)
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
In a plane, the equation of a line is given by the popular equation y = m x + C. Let's look at how the equation of a line is written in vector form and Cartesian form.
Consider a line that passes through a given point, say ‘A’, and the line is parallel to a given vector '\(\vec{b}\)‘. Here, the line ’l' is given to pass through ‘A’, whose position vector is given by '\(\vec{a}\)‘. Now, consider another arbitrary point ’P' on the given line, where the position vector of 'P' is given by '\(\vec{r}\)'.
\(\vec{AP}\)=𝜆\(\vec{b}\)
Also, we can write vector AP in the following manner:
\(\vec{AP}\)=\(\vec{OP}\)–\(\vec{OA}\)
𝜆\(\vec{b}\) =\(\vec{r}\)–\(\vec{a}\)
\(\vec{a}\)=\(\vec{a}\)+𝜆\(\vec{b}\)
\(\vec{b}\)=𝑏1\(\hat{i}\)+𝑏2\(\hat{j}\) +𝑏3\(\hat{k}\)