Find the shortest distance between the skew lines $\vec{r} = (-\hat{i} - 2\hat{j} - 3\hat{k}) + t(3\hat{i} - 2\hat{j} - 2\hat{k})$ and $\vec{r} = (7\hat{i} + 4\hat{k}) + s(\hat{i} - 2\hat{j} + 2\hat{k})$.
Step 1: Identify the vectors.
Let the lines be \(\vec{r} = \vec{a_1} + t\vec{b_1}\) and \(\vec{r} = \vec{a_2} + s\vec{b_2}\), where:
Step 2: Calculate \(\vec{a_2} - \vec{a_1}\)
\(\vec{a_2} - \vec{a_1} = (7\hat{i} + 4\hat{k}) - (-\hat{i} - 2\hat{j} - 3\hat{k}) = 8\hat{i} + 2\hat{j} + 7\hat{k}\)
Step 3: Calculate \(\vec{b_1} \times \vec{b_2}\).
\(\vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -2 & -2 \\ 1 & -2 & 2 \end{vmatrix} = \hat{i}(-4 - 4) - \hat{j}(6 + 2) + \hat{k}(-6 + 2) = -8\hat{i} - 8\hat{j} - 4\hat{k}\)
Step 4: Find the magnitude of \(\vec{b_1} \times \vec{b_2}\).
\(|\vec{b_1} \times \vec{b_2}| = \sqrt{(-8)^2 + (-8)^2 + (-4)^2} = \sqrt{64 + 64 + 16} = \sqrt{144} = 12\)
Step 5: Calculate the shortest distance.
The shortest distance d is given by:
\( d = \left| \frac{(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})}{|\vec{b_1} \times \vec{b_2}|} \right| \)
\( d = \left| \frac{(8\hat{i} + 2\hat{j} + 7\hat{k}) \cdot (-8\hat{i} - 8\hat{j} - 4\hat{k})}{12} \right| \)
\( d = \left| \frac{-64 - 16 - 28}{12} \right| = \left| \frac{-108}{12} \right| = |-9| = 9 \)
Therefore, the shortest distance between the skew lines is 9.
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).