Question:

Find the shortest distance between the lines  \(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}\) and \(\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\)

Updated On: Sep 20, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The given lines are \(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}\) and \(\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\)

It is known that the shortest distance between the two lines,
\(\frac{x-x_1}{a_1}=\frac{y-y_1}{b_1}=\frac{z-z_1}{c_1}\) and \(\frac{x-x_2}{a_2}=\frac{y-y_2}{b_2}=\frac{z-z_2}{c_2}\), is given by,

d=\(\frac{\begin{vmatrix}x_2-x_1&y_2-y_1&z_2-z_1\\a_1&b_1&c_1\\a_2&b_2&c_2\end{vmatrix}}{\sqrt{(b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2+(a_1b_2-a_2b_1)^2}}\)....(1)

Comparing the given equations, we obtain,
x1=-1, y1=-1, z1=-1
a1=7, b1=-6, c1=1
x2=3, y2=5, z2=7
a2=1, b2=-2, c2=1

Then,
\(\begin{vmatrix}x_2-x_1&y_2-y_1&z_2-z_1\\a_1&b_1&c_1\\a_2&b_2&c_2\end{vmatrix}\)

=\(\begin{vmatrix}4&6&8\\7&-6&1\\1&-2&1\end{vmatrix}\)

=4(-6+2)-6(7-1)+8(-14+6)
=-16-36-64
=-116
\(\Rightarrow \sqrt{(b_1c_2-b_2c_1)^2+(c1a2-c_2a_1)^2+(a_1b_2-a_2b_1)^2}\)

=\(\sqrt{(-6+2)^2+(1+7)^2+(-14+6)^2}\)

=\(\sqrt{16+36+64}\)

=\(\sqrt{116}\)
=\(2\sqrt{29}\)

Substituting all the values in equation(1), we obtain

d=\(\frac{-116}{2\sqrt{29}}\)

=\(\frac{-58}{\sqrt{29}}\)

=\(\frac{-2*29}{\sqrt{29}}\)

=-2\(\sqrt{29}\)

Since, the distance is always non-negative, the distance between the given lines is 2\(\sqrt{29}\) units.

Was this answer helpful?
0
0

Top Questions on Three Dimensional Geometry

View More Questions

Concepts Used:

Shortest Distance Between Two Parallel Lines

Formula to find distance between two parallel line:

Consider two parallel lines are shown in the following form :

\(y = mx + c_1\) …(i)

\(y = mx + c_2\) ….(ii)

Here, m = slope of line

Then, the formula for shortest distance can be written as given below:

\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)

If the equations of two parallel lines are demonstrated in the following way :

\(ax + by + d_1 = 0\)

\(ax + by + d_2 = 0\)

then there is a little change in the formula.

\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)