Find the shortest distance between the lines whose vector equations are
\(\overrightarrow r=(1-t)\hat i+(t-2)\hat j+(3-2t)\hat k\) and
\(\overrightarrow r=(s+1)\hat i+(2s-1)\hat j-(2s+1)\hat k\)
The given lines are
\(\overrightarrow r=(1-t)\hat i+(t-2)\hat j+(3-2t)\hat k\)
\(\Rightarrow\overrightarrow r=(\hat i-2\hat j+3\hat k)+t(-\hat i+\hat j-2\hat k)\)...(1)
\(\overrightarrow r=(s+1)\hat i+(2s-1)\hat j-(2s+1)\hat k\)
\(\Rightarrow\overrightarrow r=(\hat i-\hat j+\hat k)+s(\hat i+2\hat j-2\hat k)\)...(2)
It is known that the shortest distance between the lines,
\(\overrightarrow r=\overrightarrow a_1+\lambda \overrightarrow b_1\) and \(\overrightarrow r=\overrightarrow a_2+\mu \overrightarrow b_2\), is given by,
d=|(b1→×b2→).(a2→-a2→)/|b1→×b2→||...(3)
For the given equations,
\(\overrightarrow a_1= \hat i-2\hat j+3\hat k\)
\(\overrightarrow b_1= -\hat i+\hat j-2\hat k\)
\(\overrightarrow a_2= \hat i-\hat j-\hat k\)
\(\overrightarrow b_2= \hat i+2\hat j-2\hat k\)
\(\overrightarrow a_2-\overrightarrow a_1\)
=\((\hat i-\hat j-\hat k)\)-\((\hat i-2\hat j+3\hat k)\)=\(\hat j-4\hat k\)
\(\overrightarrow b_1.\overrightarrow b_2\) = \(\begin{vmatrix}\hat i&\hat j&\hat k\\-1&1&-2\\1&2&-2\end{vmatrix}\)
=\((-2+4)\hat i-(2+2)\hat j+(-2-1)\hat k\)
=\(2\hat i-4\hat j-3\hat k\)
\(\Rightarrow \mid \overrightarrow b_1*\overrightarrow b_2\mid\)
=\(\sqrt{(2)^2+(-4)^2+(-3)^2}\)
=\(\sqrt{4+16+9}\)
=\(\sqrt{29}\)
∴(\( \overrightarrow b_1*\overrightarrow b_2\)).(\(\overrightarrow a_2-\overrightarrow a_1\))
=(\(2\hat i-4\hat j-3\hat k\)).(\(\hat j-4\hat k\)^)
=-4+12
=8
Substituting all the values in equation (3), we obtain
d=|\(\frac{8}{\sqrt{29}}\)|
=\(\frac{8}{\sqrt{29}}\)
Therefore, the shortest distance between the lines is \(\frac{8}{\sqrt{29}}\) units.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
A compound (A) with molecular formula $C_4H_9I$ which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C8H18, which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of A, (B), (C) and (D) when (A) reacts with alcoholic KOH.
Formula to find distance between two parallel line:
Consider two parallel lines are shown in the following form :
\(y = mx + c_1\) …(i)
\(y = mx + c_2\) ….(ii)
Here, m = slope of line
Then, the formula for shortest distance can be written as given below:
\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)
If the equations of two parallel lines are demonstrated in the following way :
\(ax + by + d_1 = 0\)
\(ax + by + d_2 = 0\)
then there is a little change in the formula.
\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)