Find the shortest distance between the lines whose vector equations are
\(\overrightarrow r=(1-t)\hat i+(t-2)\hat j+(3-2t)\hat k\) and
\(\overrightarrow r=(s+1)\hat i+(2s-1)\hat j-(2s+1)\hat k\)
The given lines are
\(\overrightarrow r=(1-t)\hat i+(t-2)\hat j+(3-2t)\hat k\)
\(\Rightarrow\overrightarrow r=(\hat i-2\hat j+3\hat k)+t(-\hat i+\hat j-2\hat k)\)...(1)
\(\overrightarrow r=(s+1)\hat i+(2s-1)\hat j-(2s+1)\hat k\)
\(\Rightarrow\overrightarrow r=(\hat i-\hat j+\hat k)+s(\hat i+2\hat j-2\hat k)\)...(2)
It is known that the shortest distance between the lines,
\(\overrightarrow r=\overrightarrow a_1+\lambda \overrightarrow b_1\) and \(\overrightarrow r=\overrightarrow a_2+\mu \overrightarrow b_2\), is given by,
d=|(b1→×b2→).(a2→-a2→)/|b1→×b2→||...(3)
For the given equations,
\(\overrightarrow a_1= \hat i-2\hat j+3\hat k\)
\(\overrightarrow b_1= -\hat i+\hat j-2\hat k\)
\(\overrightarrow a_2= \hat i-\hat j-\hat k\)
\(\overrightarrow b_2= \hat i+2\hat j-2\hat k\)
\(\overrightarrow a_2-\overrightarrow a_1\)
=\((\hat i-\hat j-\hat k)\)-\((\hat i-2\hat j+3\hat k)\)=\(\hat j-4\hat k\)
\(\overrightarrow b_1.\overrightarrow b_2\) = \(\begin{vmatrix}\hat i&\hat j&\hat k\\-1&1&-2\\1&2&-2\end{vmatrix}\)
=\((-2+4)\hat i-(2+2)\hat j+(-2-1)\hat k\)
=\(2\hat i-4\hat j-3\hat k\)
\(\Rightarrow \mid \overrightarrow b_1*\overrightarrow b_2\mid\)
=\(\sqrt{(2)^2+(-4)^2+(-3)^2}\)
=\(\sqrt{4+16+9}\)
=\(\sqrt{29}\)
∴(\( \overrightarrow b_1*\overrightarrow b_2\)).(\(\overrightarrow a_2-\overrightarrow a_1\))
=(\(2\hat i-4\hat j-3\hat k\)).(\(\hat j-4\hat k\)^)
=-4+12
=8
Substituting all the values in equation (3), we obtain
d=|\(\frac{8}{\sqrt{29}}\)|
=\(\frac{8}{\sqrt{29}}\)
Therefore, the shortest distance between the lines is \(\frac{8}{\sqrt{29}}\) units.
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
Formula to find distance between two parallel line:
Consider two parallel lines are shown in the following form :
\(y = mx + c_1\) …(i)
\(y = mx + c_2\) ….(ii)
Here, m = slope of line
Then, the formula for shortest distance can be written as given below:
\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)
If the equations of two parallel lines are demonstrated in the following way :
\(ax + by + d_1 = 0\)
\(ax + by + d_2 = 0\)
then there is a little change in the formula.
\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)