Find the shortest distance between the lines whose vector equations are
\(\overrightarrow r=(\hat i+2\hat j+3\hat k)+\lambda(\hat i-3\hat j+2\hat k)\)
and \(\overrightarrow r=(4\hat i+5\hat j+6\hat k)+\mu(2\hat i+3\hat j+\hat k)\)
The given lines are \(\overrightarrow r=(\hat i+2\hat j+3\hat k)+\lambda(\hat i-3\hat j+2\hat k)\)and \(\overrightarrow r=(4\hat i+5\hat j+6\hat k)+\mu(2\hat i+3\hat j+\hat k)\)
It is known that the shortest distance between the lines, \(\overrightarrow r=\overrightarrow a_1+\lambda b_1\) and \(\overrightarrow r=\overrightarrow a_2+\mu b_2\), is given by,
d=|(b1×b2).(a2-a2)/|b1×b2||...(1)
Comparing the given equations with \(\overrightarrow r=\overrightarrow a_1+\lambda b_1\) and \(\overrightarrow r=\overrightarrow a_2+\mu b_2\), we obtain
\(a_1=\hat i+2\hat j+3\hat k\)
\(b_1=\hat i-3\hat j+2\hat k\)
\(a_2=4\hat i+5\hat j+6\hat k\)
\(b_2=2\hat i+3\hat j+\hat k\)
\(\overrightarrow a_2-\overrightarrow a_1\)
=\((4\hat i+5\hat j+6\hat k)\)-\((\hat i+2\hat j+3\hat k)\)
=\(3\hat i+3\hat j+3\hat k\)
\(\overrightarrow b_1*\overrightarrow b_2\)
=\(\begin{vmatrix}\hat i&\hat j&\hat k\\1&-3&2\\2&3&1\end{vmatrix}\)
=(-3-6)\(\hat i\)-(1-4)\(\hat j\)+(3+6)\(\hat k\)
=-9\(\hat i\)+3\(\hat j\)+9\(\hat k\)
\(\Rightarrow \mid \overrightarrow b_1*\overrightarrow b_2\mid\)
=\(\sqrt{(-9)^2+(3)^2+(9)^2}\)
=\(\sqrt{81+9+81}\)
=\(\sqrt{171}\)
=\(3\sqrt{19}\)
\((\overrightarrow b_1*\overrightarrow b_2)\).\((\overrightarrow a_2-\overrightarrow a_1)\)
=(-9\(\hat i\)+3\(\hat j\)+9\(\hat k\)).(3\(\hat i\)+3\(\hat j\)+3\(\hat k\))
=-9×3+3×3+9×3
=9
Substituting all the values in equation (1), we obtain
d=|\(\frac{9}{3\sqrt{19}}\)|
=\(\frac{3}{\sqrt {19}}\)
Therefore, the shortest distance between the two given lines is \(\frac{3}{\sqrt {19}}\) units.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Formula to find distance between two parallel line:
Consider two parallel lines are shown in the following form :
\(y = mx + c_1\) …(i)
\(y = mx + c_2\) ….(ii)
Here, m = slope of line
Then, the formula for shortest distance can be written as given below:
\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)
If the equations of two parallel lines are demonstrated in the following way :
\(ax + by + d_1 = 0\)
\(ax + by + d_2 = 0\)
then there is a little change in the formula.
\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)