Find the shortest distance between the lines
\(\overrightarrow r=(\hat i+2\hat j+\hat k)+\lambda(\hat i-\hat j+\hat k)\) and
\(\overrightarrow r=2\hat i-\hat j-\hat k+\mu\,(2\hat i+2\hat j+2\hat k)\)
The equations of the given lines are
\(\overrightarrow r=(\hat i+2\hat j+\hat k)+\lambda(\hat i-\hat j+\hat k)\)
\(\overrightarrow r=2\hat i-\hat j-\hat k+\mu\,(2\hat i+2\hat j+2\hat k)\)
It is known that the shortest distance between the lines,
\(\overrightarrow r= \overrightarrow a_1+\lambda\overrightarrow b_1\)and \(\overrightarrow r=\overrightarrow a_2+\mu\overrightarrow b_2\) is given by,
d=|(b1→×b2→).(a2→-a2→)/b1→×b2→|....(1)
Comparing the given equations, we obtain
\(\overrightarrow a_1\)=\(\hat i+2\hat j+\hat k\)
\(\overrightarrow b_1\)=\(\hat i-\hat j+\hat k\)
\(\overrightarrow a_2\)=\(2\hat i-\hat j-\hat k\)
\(\overrightarrow b_2\)=\(2\hat i+\hat j+2\hat k\)
\(\overrightarrow a_2\)-\(\overrightarrow a_1\)=(\(2\hat i-\hat j-\hat k\))-(\(\hat i+2\hat j+\hat k\))=\(\hat i-3\hat j-2\hat k\)
\(\overrightarrow b_1*\overrightarrow b_2= \begin{vmatrix}\hat i&\hat j&\hat k\\1&-1&1\\2&1&2\end{vmatrix}\)
\(\overrightarrow b_1*\overrightarrow b_2\)=\((-2-1)\hat i-(2-2)\hat j+(1+2)\hat k=3\hat i+3\hat k\)
\(\Rightarrow\) |\(\overrightarrow b_1*\overrightarrow b_2\)|
=\(\sqrt{(-3)^2+(3)^2}\)
=\(\sqrt{9+9}\)
=\(\sqrt{18}\)
=3\(\sqrt2\)
Substituting all the values in equation(1), we obtain
d=\(\begin{vmatrix}\frac{(-3\hat i+3\hat k).(\hat i-3\hat j-2\hat k)}{3\sqrt2}\end{vmatrix}\)
\(\Rightarrow d=\begin{vmatrix}\frac{(-3.1+3(-2))}{3\sqrt2}\end{vmatrix}\)
\(\Rightarrow d=\begin{vmatrix}\frac{-9}{3\sqrt2}\end{vmatrix}\)
\(\Rightarrow d=\frac{3}{2}\)
=\(\frac{3\sqrt2}{2}\)
Therefore, the shortest distance between the two lines is \(\frac{3\sqrt2}{2}\) units.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Let \(\alpha x+\beta y+y z=1\) be the equation of a plane passing through the point\((3,-2,5)\)and perpendicular to the line joining the points \((1,2,3)\) and \((-2,3,5)\) Then the value of \(\alpha \beta y\)is equal to ____
What is the Planning Process?
Formula to find distance between two parallel line:
Consider two parallel lines are shown in the following form :
\(y = mx + c_1\) …(i)
\(y = mx + c_2\) ….(ii)
Here, m = slope of line
Then, the formula for shortest distance can be written as given below:
\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)
If the equations of two parallel lines are demonstrated in the following way :
\(ax + by + d_1 = 0\)
\(ax + by + d_2 = 0\)
then there is a little change in the formula.
\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)