Find the principal value of:
\( \cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}(1) \)
Step 1: Evaluate \( \cos^{-1}\left(-\frac{1}{2}\right) \)
Using identity: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] So, \[ \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right) \] Now, \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \Rightarrow \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \]
Step 2: Evaluate \( \sin^{-1}\left(\frac{1}{2}\right) \)
From standard value: \[ \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \]
Step 3: Multiply and Add
\[ \cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{2\pi}{3} + 2 \cdot \frac{\pi}{6} = \frac{2\pi}{3} + \frac{\pi}{3} = \pi \]
\[ \boxed{\pi} \]
Prove that:
\( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right), \quad x \in [0, 1] \)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.