Find the principal value of:
\( \cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}(1) \)
Step 1: Evaluate \( \cos^{-1}\left(-\frac{1}{2}\right) \)
Using identity: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] So, \[ \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right) \] Now, \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \Rightarrow \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \]
Step 2: Evaluate \( \sin^{-1}\left(\frac{1}{2}\right) \)
From standard value: \[ \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \]
Step 3: Multiply and Add
\[ \cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{2\pi}{3} + 2 \cdot \frac{\pi}{6} = \frac{2\pi}{3} + \frac{\pi}{3} = \pi \]
\[ \boxed{\pi} \]
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]
Solve the following LPP graphically: Maximize: \[ Z = 2x + 3y \] Subject to: \[ \begin{aligned} x + 4y &\leq 8 \quad \text{(1)} \\ 2x + 3y &\leq 12 \quad \text{(2)} \\ 3x + y &\leq 9 \quad \text{(3)} \\ x &\geq 0,\quad y \geq 0 \quad \text{(non-negativity constraints)} \end{aligned} \]