Find the principal value of:
\( \cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}(1) \)
Step 1: Evaluate \( \cos^{-1}\left(-\frac{1}{2}\right) \)
Using identity: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] So, \[ \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right) \] Now, \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \Rightarrow \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \]
Step 2: Evaluate \( \sin^{-1}\left(\frac{1}{2}\right) \)
From standard value: \[ \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \]
Step 3: Multiply and Add
\[ \cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{2\pi}{3} + 2 \cdot \frac{\pi}{6} = \frac{2\pi}{3} + \frac{\pi}{3} = \pi \]
\[ \boxed{\pi} \]
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]